
Agent-Based Modeling for Archaeologists:
Part 1
Iza Romanowska , Stefani A. Crabtree , Kathryn Harris, and Benjamin DaviesQ1

ABSTRACT

Formal models of past human societies informed by archaeological research have a high potential for shaping some of the most topical
current debates. Agent-based models, which emphasize how actions by individuals combine to produce global patterns, provide a con-
venient framework for developing quantitative models of historical social processes. However, being derived from computer science, the
method remains largely specialized in archaeology. In this paper and the associated tutorial, we provide a jargon-free introduction to the
technique, its potential and limits as well as its diverse applications in archaeology and beyond. We discuss the epistemological rationale of
using computational modeling and simulation, classify types of models, and give an overview of the main concepts behind agent-based
modeling.

Keywords: agent-based modelling, simulation, complex systems, complexity science, computational modelling, NetLogo

Modelos cuantitativos robustos de sociedades humanas en el pasado tienen el potencial de informar los temas de debate actual, parti-
cularmente modelos informados por estudios de arqueología. Modelos basados en sistemas multiagente proveen un marco práctico para
explorar modelos cuantitativos de sociedades en el pasado. Aun así, al ser un método de informática no es aún bien establecido entre la
mayoría de arqueólogos. En este artículo y el tutorial que lo acompaña, proveemos una introducción a estos métodos, libres de jerga
técnica, su potencial y sus límites, y también las diversas aplicaciones en arqueología. Además, discutimos la epistemología de utilizar
modelos computacionales y de simulación, clasificamos los tipos de modelos, y proveemos un resumen de los conceptos principales de los
modelos multiagente.

Palabras clave:Q2

Archaeology is uniquely positioned to use modern technology to
understand the long trajectory of human history. The time-depth
of archaeological inquiry allows researchers to investigate
long-term and large-scale trends in human behavior, such as the
evolution of social hierarchy (Crabtree et al. 2017), the changes in
subsistence strategies (Powers and Lehmann 2014), or the
resilience of human groups in the face of natural disasters
(d’Alpoim Guedes et al. 2016). Just as material culture studies
greatly benefited from the introduction of formal statistical tools,
many current conceptual models— often grouped under the
umbrella term of “theory building”—would benefit from a
systematic and formal approach of computational modeling
(d’Alpoim Guedes et al. 2016; Lake 2014).

One class of computational models that has been used increas-
ingly in archaeology over the past two decades is agent-based
modeling. Researchers studying archaeological systems world-
wide have adopted this formal modeling technique to approach
their research questions (e.g., Cegielski and Rogers 2016; Kohler
2012; Linde and Romanowska 2018; Madella et al. 2014; Perry et al.
2016; Rogers and Cegielski 2017; Romanowska 2015; Wurzer et al.
2015). Archaeologists use agent-based modeling to understand

archaeological patterns across a range of temporal and spatial
settings (e.g., Angourakis et al. 2014; Balbo et al. 2014; Morrison
and Allen 2017; Perrault and Brantingham 2011; Premo 2015; Wren
et al. 2014).

Our own experiences with simulation reflect this topical diversity,
as we have used simulation to explore the development of the
wine industry during the Bronze to Iron Age transition in Littoral
France (Crabtree 2016), exchange practices and the development
of hierarchy in the US Southwest (Crabtree 2015; Crabtree et al.
2017), Pleistocene hominin dispersals (Romanowska et al. 2017),
and the formation of archaeological landscapes in Australia
(Davies et al. 2015). Although the scenarios are simulated, the
implications for research are real. For example, Lake (2014)
discusses how formal reaction-diffusion models and long-term
evolutionary models have already helped to move research
forward on different aspects of human origins studies, noting that
agent-based models have the potential to address many other
areas of inquiry.

In this article and in the accompanying tutorial, we walk the reader
through the process of building an agent-based simulation using

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

HOW TO SERIES

Advances in Archaeological Practice 0(0), 2019, pp. 1–7
Copyright 2019 © Society for American Archaeology

DOI:10.1017/aap.2019.6

1

https://orcid.org/0000-0002-9487-2111
https://orcid.org/0000-0001-8585-8943
iromanow
Sticky Note
modelos basados en agentes, simulación, sistemas complejos, modelos computacionales, NetLogo

iromanow
Sticky Note
Correct

iromanow
Sticky Note
The correct title is:

Agent-based Modeling for Archaeologists

A step-by-step guide for using agent-based modeling in archaeological research (Part I of III)

iromanow
Sticky Note
Ben Davies' orcid id: 0000-0002-9066-098X

iromanow
Sticky Note
Please replace 2015 with 2016

iromanow
Sticky Note
Please replace: 'In this article and in the accompanying tutorial' with 'In this series of articles and in the accompanying tutorials'

an example of a model used to understand toolkit richness
(Brantingham 2003). Lithics are commonly used to develop
hypotheses about the behavior of their makers, but the causal
relationship between any particular foraging strategy and the
composition of lithic assemblages remains unclear. Using
this example, we show how Brantingham’s model enables
researchers to use archaeological data (patterns in lithic
assemblages) to identify behavior of people in the past
(foraging strategies).

This is the first in a series of three articles and tutorials on
agent-based modeling. A recent survey (Davies and Romanowska
2018) showed that the majority of archaeological modelers
had to depend on self-teaching and peer support to acquire
skills necessary to build their simulations. Although other
agent-based modeling tutorials exist (e.g., Grimm and Railsback
2011) this series is unique in that it presents a case study
of an archaeological system. We have also kept it largely jargon
free with the intention of presenting the method to researchers
with no previous experience in computational modeling.

In Part 1, we discuss the definition and function of agent-based
models and introduce some key concepts in simulation. In the
associated tutorial, we show how to build a simple hypothesis-testing
agent-based model using a user-friendly, open-source, cross-
platform simulation framework—NetLogo (Wilensky 1999)—and
provide an outline of programming concepts. Part 2 (Davies et al.
2019) builds on this tutorial and incorporates realistic geographic
information systems dataplanes to move the model from abstract to
more realistic. Finally, in Part 3 (Crabtree et al. 2019), we demonstrate
how agent-based models can be used for outreach to explain
archaeological patterns to the public, whereas the associated tutorial
will focus on analyzing the results.

WHY MODEL? AND IF SO, HOW
TO MODEL?
Simulation has been hailed as the third leg of the scientific tripod:
a qualitatively new scientific method falling between theoretical
and empirical research (Axelrod 2006; Epstein 2006; Hartmann
1996; Kohler 2012). For example, Axelrod says:

Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike
deduction, it does not prove theorems. Instead, a simulation
generates data that can be analyzed inductively. Unlike
typical induction, however, the simulated data comes from a
rigorously specified set of rules rather than direct measure-
ment of the real world [Axelrod 2006:95, emphasis added].

In fact, as Whitley (2016) points out, archaeologists commonly
engage in what can be called “an analogue simulation.” For
instance, flintknapping experiments aimed at replicating past
techniques or reenactments of medieval battles do not differ from
computer simulation in the normative sense. Both start with a
model—that is, a set of basic assumptions (e.g., knapping was
performed using hands)—and are validated by comparing the
simulation results (e.g., the shape and dimensions of a knapped
stone tool) with the available data (e.g., archaeological artifacts).

Simulation is an established scientific tool, widely used across the
natural and social sciences, as well as outside of academia, where
it is commonly applied in industry, economics, and policy making
(e.g., Abergel et al. 2014; Chattoe-Brown 2013; Davidsson and
Verhagen 2013; Farmer and Foley 2009; Hammond 2015;
Hartmann 1996; Mitchell 2009; Pyka and Werker 2009). Although
there are many different types of simulation techniques, they share
a number of characteristics.

At the core of every simulation is a model—a simplified
representation of a real-world system, composed of entities and
the relationships between them. In the philosophy of science, a
model is defined simply as a set of assumptions (Godfrey-Smith
2003). Some models can be built using observations derived from
experiments or from systems that can be directly studied. For
example, a model of a preindustrial village may assume that
people who lived in a single household were in some way related
because of what we know from the observations of modern
human groups and their family-forming behaviors. In other cases,
the dependencies or the importance of different types of entities
and processes are theorized about (known as “conceptual mod-
eling”). If we were interested in how different degrees of social
cohesion may lead over time to different habitation patterns, a
conceptual model of social interaction would form the basis of the
simulation.

Similar to a model, simulation is an artificially constructed and
simplified representation of a real-world system with all relation-
ships formally defined (known as “ontology”), but with the add-
itional dimension of time (Hofman et al. 2011; Smith 2000).
Therefore, simulation investigates changes occurring in a system
over time and space as a result of external (exogenous) factors or
the internal dynamics of the system.

The rapid rise of simulation in the 1990s came hand-in-hand with
the recognition that many (if not most) real-world systems are
complex; that is, governed by nonlinear processes, which escape
more traditional, reductionist scientific methods focused on
detailed description of system elements. Instead, it was the
interaction between these elements that explained the system
(Ladyman et al. 2013). For example, Schelling (1971) showed how a
complex pattern (racially segregated neighborhoods) may emerge
from relatively small sets of simple rules (slight incline of urban
dwellers toward settling down among people similar to them),
often defying expectations or common sense (“intolerance”—that
is, having a low tolerance for neighbors of a different type—
actually decreases segregation; see Chattoe-Brown 2013 for
discussion).

This shift in research focus from the “detail” to the “whole,”
coupled with rapidly increasing computer power available to
researchers, led to the development of complexity science.
The core idea behind complexity science is the observation that
simple interactions of multiple entities may lead to surprising
global patterns and that this connection could not be easily
deduced from studying each of the system’s elements in
isolation. This process, known as “emergence,” is often
summarized by the emblematic motto: the whole is greater than
the sum of its parts (Mitchell 2009:13). The emergent properties of
complex systems mean that simulation is the primary tool for
studying them.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

HOW TO SERIES

2 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | Month 2019

iromanow
Sticky Note
Please replace 'in the 1990s' with 'since the 1960s'

DIFFERENT TYPES OF MODELS
Hartmann (1996) recognized five main applications of simulation
techniques used across different scientific disciplines: (1) simula-
tions as a technique used to investigate the detailed dynamics of a
system; (2) simulations as a heuristic tool for developing hypoth-
eses, models, and theories; (3) simulations as a substitute for an
experiment when performing it is unfeasible or not practical; (4)
simulations as a tool for experimentalists used to support empir-
ical experiments; and (5) simulations as a pedagogical tool
allowing students and wider audiences to gain understanding of a
process. Four of them are directly applicable in the context of
traditional archaeological inquiry, whereas application (4) has
been shown to be a valuable tool in archaeologically inspired
anthropological research (Mesoudi and O’Brien 2008).

Simulation as a Technique
Many scientific disciplines can study systems by directly observing
them; for example, microbiologists may observe an organism as it
undergoes a change, and sociologists can ask a sample of the
population to share their thoughts. However, in many cases, the
actual dynamics of the system cannot be observed because the
process takes too long (e.g., macroevolution of a species), the
scale is too small (e.g., quantum physics), or the system does not
exist anymore (e.g., past societies). In those cases, simulation is
the appropriate research tool.

Simulation is a formal computational tool that reveals causal
relationships between system entities and the evolution that the
system undergoes. Equally, it allows the researchers to investigate
the impact of specific events, such as a particular initial state or
rare events, on the evolution of the system (known as “historical
contingency” or “hysteresis”). Finally, exploratory models (Premo
2010), built on the minimum set of assumptions (known as “null
models” or models from “first principles”), enable researchers to
test their beliefs about the system’s dynamics and the relative
importance of different factors influencing it. We will see the value
of this particular methodology on the archaeological example
explored in the tutorial.

Simulation as a Theory-Building Tool
Simulation is commonly used as a tool for hypothesis develop-
ment. Di Paolo and colleagues (2000) call simulation an “opaque
thought experiment” because it represents a computer-based
theoretical exercise in examining what-if scenarios (known as
“subjunctive models”; David et al. 2013). The advantage of using a
computer tool is that it can explore more complex, multiscalar and
multivariate scenarios than can ever be reliably entertained in
one’s brain. In addition, as numerous examples have shown (e.g.,
Reynolds 1987; Resnick 1997; Schelling 1971), even simple models
can unfold into surprising and counterintuitive patterns. As already
mentioned, this phenomenon is known as “emergence” (Epstein
2006). The counterintuitive nature of such conclusions means that,
by definition, they would be unlikely to be proposed as a result of
conceptual modeling “in one’s head.” SecondQ3 , modeling allows
researchers to produce archaeologically testable predictions out
of existing conceptual hypotheses, articulated in natural language.
Premo describes the role of simulation as a “virtual lab” for
“eliminat[ing] the plausible scenarios that are unlikely to have

occurred, given observed characteristics of empirical data”
(2006:108). As a result, instead of producing new theoretical
models, which do not surpass the already existing ones, formal
methods such as simulation build an increasingly strong frame-
work based on “knowledge that over time is cumulative at both a
theoretical and empirical level” (Neiman 1995:30).

Simulation as a Substitute for an Experiment
Simulation can replace an experiment in situations when practical
constraints or ethical issues come into play (for example, if the
investigated social process takes decades to evolve or if the
experiment would subject the experimental population to pro-
longed hardship). Creating an artificial society and pestering it
with climatic fluctuations, social upheavals, or natural disasters is a
way of approaching such topical subjects as long-term social
change, resilience, evolution, and impact of innovation without
referring to modern and historical analogues and anecdotal evi-
dence, or needing extensive Institutional Review Board/Ethics
Committee oversight.

This process can be exemplified by comparing middle-range
theory to simulation (Binford 1982; Kosso 1991; Premo 2007; Raab
and Goodyear 1984). Ethnoarchaeologists study modern human
groups because their behaviors and relationships can be directly
observed. The material record generated by a modern group can
then be compared with the archaeological record. If the two
resemble each other, it is concluded that it is likely that these
archaeological remains have been generated by processes similar
to the ones driving the modern human group.

Similarly, an agent-based modeler constructs an artificial society
governed by a strictly defined set of behavioral rules, making
processes and causal relationships directly observable. The con-
sequences of the simulated processes are then compared to the
patterns in archaeological data. The aim of both types of research
is to understand the dynamics of an accessible and, therefore,
well-understood system well enough to be able to infer whether
similar processes might have taken place in the past.

While modern scientists have critiqued the use of ethnoarchae-
ology (Fahlander 2004), cautioning that modern hunter-gatherers
are not archaeological groups frozen in an early development
stage (Kelly 2013), most archaeologists use ethnographic analogy
explicitly or not. This is mostly done with appropriate caution, as
researchers understand that all societies are dynamic and chan-
ging (Martelle Hayter 1994) and realize the limitations of their
models. Agent-based modelers, who are usually archaeologists
themselves, do the same.

Simulation as a Pedagogical Tool
Simulation can be used as an education tool. For example,
Resnick (1997) used StarLogo (an early version of NetLogo) to
explore the nonintuitive phenomena of emergence, decentral-
ization feedback, self-organization, and criticality among high
school students. Similarly, the interactive visualizations (known as
“explorable explanations”) of Hart and Case (2015) guide the
participants through the process of simulating social phenomena,
such as segregation, thus elucidating the real-life societal conse-
quences of seemingly innocuous individual decisions. Because of
its game-like properties, agent-based models are engaging and

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

HOW TO SERIES

Month 2019 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 3

iromanow
Sticky Note
Please replace: "Second, modelling allows researchers..." with "Another important function of modeling is that it allows researchers..."

iromanow
Sticky Note
Please replace 'on' with 'in'.

iromanow
Sticky Note
Please remove the word 'prolonged'.

fun for specialists and non-specialists alike. They can, therefore, be
an easy and cost-effective way to represent complex relationships
and ideas and to let members of the general public, stakeholders,
or students gain deep understanding of complex concepts by
performing their own experiments. For example, van Havre (2018)
has built a model of an archaeological landscape that archaeology
students can use to explore how successful different sampling
strategies will be in finding archaeology depending on the ori-
ginal distribution of artifacts. Part 3 will further explore these
themes.

AGENT-BASED MODELING (ABM)
Agent-based modeling (ABM) is considered a “bottom up”
simulation approach because it comprises heterogeneous indivi-
duals whose actions and interactions (both with each other and
with the environment) lead to emergent population-level patterns.
This method is often contrasted with Equation-based modeling
(EBM), or the “top down” approach, where the individual actors
are treated in aggregation as a homogenous population, whose
characteristics are defined by a set of variables and whose inter-
actions are described in equations (Macal and North 2010;
Railsback and Grimm 2011).

In agent-based models, agent behavior is described in a set of
rules (algorithms; Grimm et al. 2005; Ahrweiler and Gilbert 2005)
and often modeled using probabilities (i.e., stochastically). Thus,
ABM allows the researcher to model individual-driven mechan-
isms—such as cognitive processes, cultural transmission, and
communication—and to introduce heterogeneity in the popula-
tion, be it genetic/cultural diversity or even simple age and sex
differences. As a result, the method enables a crossover between
two levels of analysis: an individual perspective, which is very
much at the heart of archaeological interest, and the global or
population-level patterns representing the consequences of
aggregated individual actions, which can be compared to the
archaeological record. ABM provides a platform that facilitates the
integration of the spatial environment as one of the primary
model entities considerably (O’Sullivan and Perry 2014; see also
Part 2 in the series), and the ability to construct models out of
familiar entities (people, groups, households, etc.) rather than in
the non-natural language of equations makes agent-based mod-
els easier to consult with and communicate to the archaeological
(and public) audience (see also Part 3 in this series). Finally, the
explicit focus on individuals and agency is a particularly important
feature for archaeologists, who for decades have been concerned
with the lack of “the individual” in the focus of archaeological
practice. For example, Gamble and Porr argue that “the individual
needs to be seen as the center of causality in order to understand
why change and variation occur. It is individuals that make deci-
sions and deal with choices” (2005:7). Computational modeling,
and ABM in particular, holds great potential for addressing this
issue as it provides a formal environment for testing the relation-
ships between individual decisions, aggregated actions, and the
consequences of these actions that are represented by the arch-
aeological record.

Often, CRM archaeologists are tasked with finding explanations
for the distribution of artifacts in their project area. These expla-
nations are built on established theory, but many CRM projects do
not allow for a full-scale analysis of an entire region. Many projects

bisect sites, and archaeologists are forced to work within a
down-sampled geographic area so that they do not explore
beyond the project area. This can hamper their ability to draw
meaningful conclusions from these partial datasets. ABM enables
the use of partial data to test models and provide predictions. For
example, if a researcher wants to understand the distribution of
finds along an alluvial plain, writing a simple agent-based model
simulating the transportation of artifacts might elucidate the pat-
terns of deposition and could further predict where artifacts would
be found. Thus, ABM can serve as a type of “behaviorally driven”
predictive modeling that incorporates our knowledge of people’s
behaviors rather than one-to-one correlations. In doing so, it could
counteract the common criticism of predictive models as being a
self-fulfilling prophecy (Wheatley 2004).

For example, the members of the Village Ecodynamics Project,
despite having a survey coverage of less than 20 percent (Kohler
and Varien 2012:18), were able to create an agent-based model
that examined the growth of population and the placement of
households on the landscape. This model has been successful in
testing hypotheses on the lifeways of Ancestral Pueblo people
and has aided greatly in our understanding of the prehistory of the
area despite the less than complete survey coverage. These
themes will be explored further in the tutorial and in Part 2.

THE TUTORIAL
The tutorial based on the model by Brantingam (2003) that
accompanies this article has been written with the general arch-
aeological audience in mind. It does not assume any previous
knowledge or skill of the reader and has been presented in a very
informal and jargon-free style. In our demonstration of agent-
based modeling, we will use an existing exploratory-type model
framework to approach a new problem and apply it to a specific
case study. Tutorial 1 (Supplementary Text 1) will focus on repli-
cating the original model; Tutorial 2 (Supplementary Text in Part 2)
will place it in a semirealistic landscape; finally, Tutorial 3
(Supplementary Text in Part 3) will explore how the results can be
interpreted and communicated to stakeholders and the general
public. In addition, we have prepared a document providing a
more extended description of NetLogo structure and features that
can be used as a glossary and for further help (Supplementary
Text 2).

While simple, the model used in the tutorials is a way to start
testing the validity of common archaeological assumptions
regarding behavioral strategies presumably employed by people
in the past. This model was also chosen because it reflects one of
a few instances in which an agent-based model has been sub-
jected to a number of published reevaluations (known as “repli-
cations”; Pop 2015; Oestmo et al. 2016). Each of them expands on
the base model and leads to new insights, thereby showing how
computational modeling facilitates the building up of our under-
standing in cumulative fashion (later models build upon and
improve earlier ones rather than compete with them). For
example, Pop (2015) revisited Brantingham’s model, arguing that
the original model did not fully appreciate the difference between
the assemblage of a living forager and an archaeological assem-
blage, which might have undergone significant changes since the
moment of being deposited. Although we acknowledge the
usefulness of this extension and find his review helpful, our tutorial

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

HOW TO SERIES

4 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | Month 2019

iromanow
Sticky Note
Please change to 2013.

iromanow
Sticky Note
please insert 'to', so that the phrase reads '...and to communicate'

focuses on Brantingham’s original model. A further test of good
modeling practice would be applying additions from Pop (2015)
and Oestmo and colleagues (2016) to the tutorial presented
below, and we encourage students to do just that.

CONCLUSIONS
The benefits of using formal models for theory building and
hypothesis testing in an academic environment are manifold.
Although conceptual modeling will always have a place in science,
building formal models, such as simulations, can enable a deeper
understanding of complex processes that incorporate a temporal
and spatial dimension. Simulations can also enable researchers to
eliminate hypotheses that sound plausible yet do not concur with
the archaeological record by thoroughly examining simulated
output. Finally, simulations can produce predictions that can be
tested on the ground with carefully focused empirical research.
Consequently, field-based, lab-based, and computer-based
research are not in competition but rather complement each
other. We argue that using them together is the best way to bring
us closer to understanding the lives of peoples in the past.

Supplementary material
For supplemental material accompanying this article, visit https://
doi.org/10.1017/aap.2019.6

Supplementary Text 1. Tutorial 1: The Base Model

Supplementary Text 2: Summary of NetLogo

Acknowledgments
This manuscript and tutorial have been developed out of a num-
ber of ABM workshops and courses, and we extend our thanks to
the many participants who have helped us to develop these
materials over the years. The authors declare no conflicts of
interest. IR received funding from the European Research Council
(ERC) (EpNet Project, grant agreement n° ERC-2013-ADG340828).
SC acknowledges support from an NSF Graduate Research
Fellowship DGE-080667, an NSF GROW fellowship, and a
Chateaubriand Fellowship. We thank two anonymous reviewers
for comments that benefited the manuscript. We also thank Colin
Wren and Andre Costopoulos for providing detailed consider-
ation of the manuscript and tutorial materials.

Data Availability Statement
No data has been used in preparation of this manuscript. The
software used in the tutorial is open access and open source
(https://ccl.northwestern.edu/netlogo/).

REFERENCED CITED
Abergel, Frédéric, Hideaki Aoyama, Bikas K. Chakrabarti, Anirban Chakraborti,

Asim Ghosh
2014 Econophysics of Agent-Based Models. Springer, New York.

Ahrweiler, Petra, and Nigel Gilbert
2005 Caffè Nero: The Evaluation of Social Simulation. Journal of Artificial

Societies and Social Simulation 8(4):1–14.

Angourakis, Andreas, Bernardo Rondelli, Sebastian Stride,
Xavier Rubio-Campillo, Andrea L. Balbo, Alexis Torrano, Verònica Martinez,
Marco Madella, and Josep M. Gurt

2014 Land Use Patterns in Central Asia. Step 1: The Musical Chairs Model.
Journal of Archaeological Method and Theory 21:405–425.

Axelrod, Robert
2006 Advancing the Art of Simulation in the Social Sciences. In Handbook of

Research on Nature-Inspired Computing for Economy and Management,
edited by Jean-Philippe Rennard, pp. 90–100. Idea Group, Hersey,
Pennsylvania.

Balbo, A. L., B. Rondelli, C. Lancelotti, A. Torrano, M. Salpeteur, N. Lipovetzky,
and M. Madella

2014 Agent-Based Simulation of Holocene Monsoon Precipitation Patterns
and Hunter-Gatherer Population Dynamics in Semi-Arid Environments.
Journal of Archaeological Method and Theory 21:426–446.

Binford, Lewis
1982 Objectivity-Explanation-Archaeology. In Theory and Explanation in

Archaeology, edited by C. Renfrew, M. Rowlands, and B. Seagraves, pp.
125–138. Academic Press, New York.

Brantingham, P. Jeffrey
2003 A Neutral Model of Stone Raw Material Procurement. American

Antiquity 68(3):487–509.
Cegielski, Wendy H., and J. Daniel Rogers

2016 Rethinking the Role of Agent-Based Modeling in Archaeology. Journal
of Anthropological Archaeology 41:283–298. DOI:10.1016/
j.jaa.2016.01.009.

Chattoe-Brown, Edmund
2013 Why Sociology Should Use Agent Based Modelling. Sociological

Research Online 18(3):3.
Crabtree, Stefani A.

2015 Inferring Ancestral Pueblo Social Networks from Simulation in the
Central Mesa Verde. Journal of Archaeological Method and Theory 22
(1):144–181. DOI:10.1007/s10816-014-9233-8.

2016 Simulating Littoral Trade: Modeling the Trade of Wine in the Bronze to
Iron Age Transition in Southern France.” Land 5(1):5. DOI:10.3390/
land5010005.

Crabtree, Stefani A., R. Kyle Bocinksy, Paul L. Hooper, Susan C. Ryan, and
Timothy A. Kohler

2017 How to Make a Polity (in the Central Mesa Verde Region). American
Antiquity 82(1):71–95.

Crabtree, Stefani A., Kathryn Harris, Benjamin Davies, Iza Romanowska
2019 Outreach in Archaeology with Agent-based modeling. Advances in

Archaeological Practice 7(2). DOI:10.1017/aap.2019.4
d’Alpoim Guedes, Jade A., Stefani A. Crabtree, R. Kyle Bocinsky, Timothy

A. Kohler
2016 Twenty-First Century Approaches to Ancient Problems: Climate and

Society. PNAS 113(51):14483-14491.
David, Nuno, Nuno Fachada, and Agostinho Rosa

2013 Verifying and Validating Simulations. In Simulating Social Complexity: A
Handbook, edited by Bruce Edmonds and Ruth Meyer, pp. 135–172.
Springer-Verlag, Berlin.

Davidsson, Paul, and Harko Verhagen
2013 Types of Simulation. In Simulating Social Complexity: A Handbook,

edited by Bruce Edmonds and Ruth Meyer, pp. 23–38. Springer-Verlag,
Berlin.

Davies, Benjamin, and Iza Romanowska
2018 An Emergent Community? Agent-Based Modelers in Archaeology. The

SAA Archaeological Record 18(2):27–32.
Davies, Benjamin, Simon J. Holdaway, and Patricia C. Fanning

2015 Modelling the Palimpsest: An Exploratory Agent-Based Model of
Surface Archaeological Deposit Formation in a Fluvial Arid Australian
Landscape. The Holocene October 19:1–14 Q4.

Davies, Benjamin, Iza Romanowska, Kathryn Harris, Stefani A. Crabtree
2019 Combining Geographic Information Systems and Agent-Based Models

in Archaeology. Advances in Archaeological Practice 7(2). DOI:10.1017/
aap.2019.5

Di Paolo, Ezequiel A., Jason Noble, and Seth Bullock
2000 Simulation Models as Opaque Thought Experiments. In Artificial Life VII:

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

HOW TO SERIES

Month 2019 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 5

https://doi.org/10.1017/aap.2019.6
https://doi.org/10.1017/aap.2019.6
https://doi.org/10.1017/aap.2019.6
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
iromanow
Sticky Note
Please amend: year: 2016
Volume: 26 issue: 3, page(s): 450-463

iromanow
Sticky Note
Please change year in the inline citation on page 1, line 49

iromanow
Sticky Note
Please remove 'by thoroughly examining simulated output'.

iromanow
Sticky Note
Please ensure that these are clickable links.

Proceedings of the Seventh International Conference on Artificial Life,
edited by N. Packard and S. Rasmussen M. A. Bedau, J. S. McCaskill, pp.
497–506. MIT Press, Cambridge, Massachusetts.

Epstein, Joshua M.
2006 Agent-Based Computational Models and Generative Social Science. In

Generative Social Science: Studies in Agent-Based Computational
Modeling, edited by Joshua M. Epstein, pp. 41–60. Princeton University
Press, Princeton, New Jersey.

Fahlander, Fredrik
2004 Archaeology and Anthropology–Brothers in Arms? On Analogies in

21st-Century Archaeology. In Material Culture and Other Things:
Post-Disciplinary Studies in the 21st Century, edited by Fredrik Fahlander
and Terje Oestigaard, pp. 185–212. Bricoleur Press, Lindome, Sweden.

Farmer, J. Doyne, and Duncan Foley
2009 The Economy Needs Agent-Based Modeling. Nature 460:685–686.

Gamble, Clive, and Martin Porr
2005 From Empty Spaces to Lived Lives. Exploring the Individual in the

Palaeolithic. In The Hominid Individual in Context: Archaeological
Investigations of Lower and Middle Palaeolithic Landscapes, Locales, and
Artefacts, edited by Clive Gamble and Martin Porr, pp. 1–12. Routledge,
Oxon, United Kingdom.

Godfrey-Smith, Peter
2003 Theory and Reality: An Introduction to the Philosophy of Science.

Science and Its Conceptual Foundations series. The University of Chicago
Press, Chicago.

Grimm, Volker, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M. Mooij, Steven
F. Railsback, Hans-Hermann Thulke, Jacob Weiner, Thorsten Wiegand, and
Donald L. DeAngelis

2005 Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons
from Ecology. Science 310(5750):987–91. DOI:10.1126/science.1116681.

Grimm, Volker, and Stephen F. Railsback
2011 Agent-Based and Individual-Based Modeling: A Practical Introduction.

Princeton University Press, Princeton, New Jersey.
Hammond, Ross A.

2015 Considerations and Best Practices in Agent-Based Modeling to Inform
Policy. In Assessment of Agent-Based Models to Inform Tobacco Policy.
Institute of Medicine, National Academy of Sciences Press, pp. A1–A27Q5 .

Hart, Vi, and Nicky Case
2015 Parable of the Polygons: A Playable Post on the Shape of Society, http://

ncase.me/polygons/, accessed March 15, 2019.
Hartmann, Stephan

1996 The World as a Process: Simulations in the Natural and Social Sciences.
In Modelling and Simulation in the Social Sciences from the Philosophy of
Science Point of View, edited by Rainer Hegselmann, Ulrich Mueller, and
Klaus G. Troitzsch, pp. 77–100. Kluwer, Dordrecht, Netherlands.

Hofmann, Marco, Julia Palii, and Goran Mihelcic
2011 Epistemic and Normative Aspects of Ontologies in Modelling and

Simulation. Journal of Simulation 5(3):135–146.
Kelly, Robert L.

2013 The Lifeways of Hunter-Gatherers: The Foraging Spectrum. 2nd edition.
Cambridge University Press, Cambridge.

Kohler, Timothy A.
2012 Complex Systems and Archaeology. In Archaeological Theory Today,

edited by Ian Hodder, pp. 93–123. Polity Press, Cambridge.
Kohler, Timothy A., and Mark D. Varien

2012 Emergence and Collapse of Early Villages: Models of Central Mesa
Verde Archaeology. University of California Press, Berkeley.

Kosso, Peter
1991 Middle-Range Theory as Hermeneutics. American Antiquity

56(4):621–627.
Ladyman, James, James Lambert, and Karoline Wiesner

2013 What Is a Complex System? European Journal for Philosophy of Science
3(1):33–67.

Lake, Mark W.
2014 Trends in Archaeological Simulation. Journal of Archaeological Method

and Theory 21:258–287.

Linde, Lennart, and Iza Romanowska
2018 The-ABM-in-Archaeology-Bibliography. bit.ly/ABMBiblio. DOI: 10.5281/

zenodo.1343332 Q6
Macal, Charles M., and Michael J. North

2010 Tutorial on Agent-Based Modelling and Simulation. Journal of
Simulation 4(3):151–162.

Madella, Marco, Bernardo Rondelli, Carla Lancelotti, Andrea Balbo, and
Debora Zurro

2014 Introduction to Simulating the Past. Journal of Archaeological Method
and Theory 21:251–257.

Martelle Hayter, Holly
1994 Hunter-Gatherers and the Ethnographic Analogy: Theoretical

Perspectives. Totem: The University of Western Ontario Journal of
Anthropology 1(1): Article 8 Q7.

Mesoudi, Alex, and Michael J. O’Brien
2008 The Cultural Transmission of Great Basin Projectile-Point Technology II:

An Agent-Based Computer Simulation. American Antiquity 73(4):627–644.
Mitchell, Melanie

2009 Complexity. A Guided Tour. Oxford University Press, Oxford.
Morrison, Alex E., and Melinda S. Allen

2017 Agent-Based Modelling, Molluscan Population Dynamics, and
Archaeomalacology. Quaternary International 427A:170–183.

Neiman, Fraser D.
1995 Stylistic Variation in Evolutionary Perspective: Inferences from Decorative

Diversity and Interassemblage Distance in Illinois Woodland Ceramic
Assemblages. American Antiquity 60(1):7–36.

Oestmo, Simen, Marco A. Janssen, and Curtis W. Marean
2016 Testing Brantingham’s Neutral Model: The Effect of Spatial Clustering

on Stone Raw Material Procurement. In Simulating Prehistoric and Ancient
Worlds, edited by Juan Antonio Barceló and Florencia Del Castillo, pp.
175–188. Springer, Cham, Switzerland.

O’Sullivan, David, and George Perry
2013 Spatial Simulation: Exploring Pattern and Process. Wiley-Blackwell,

Chichester, United Kingdom.
Perreault, Charles, and P. Jeffrey Brantingham

2011 Mobility-Driven Cultural Transmission along the Forager-Collector
Continuum. Journal of Anthropological Archaeology 30(1):62–68.

Perry, George L. W., John Wainwright, Thomas R. Etherington, and Janet
M. Wilmshurst

2016 Experimental Simulation: Using Generative Modeling and
Paleoecological Data to Understand Human-Environment Interactions.
Frontiers in Ecology and Evolution 4(109):1–14.

Pop, Cornel M.
2015 Simulating Lithic Raw Material Variability in Archaeological Contexts: A

Re-evaluation and Revision of Brantingham’s Neutral Model. Journal of
Archaeological Method and Theory 23:1127. doi:10.1007/
s10816-015-9262-y Q8.

Powers, S. T., and L. Lehmann
2014 An Evolutionary Model Explaining the Neolithic Transition from

Egalitarianism to Leadership and Despotism. Proceedings of the Royal
Society B 281(1791):20141349–20141349. DOI:10.1098/rspb.2014.1349 Q9.

Premo, Luke S.
2006 Agent-Based Models as Behavioral Laboratories for Evolutionary

Anthropological Research. Arizona Anthropologist 17:91–113.
2007 Exploratory Agent-Based Models: Towards an Experimental

Ethnoarchaeology. In Digital Discovery: Exploring New Frontiers in Human
Heritage, edited by J. T. Clark and E. M. Hagemeister, pp. 91–113.
Archaeolingua, Budapest.

2010 Equifinality and Explanation: The Role of Agent-based Modeling in
Postpositivist Archaeology. In Simulating Change. Archaeology into the
Twenty-First Century, edited by Andre Costopoulos and Mark Lake, pp. 28–
37. University of Utah Press, Salt Lake City.

2015 Mobility and Cultural Diversity in Central-Place Foragers: Implications for
the Emergence of Modern Human Behavior. In Learning Strategies and
Cultural Evolution during the Palaeolithic, edited by Alex Mesoudi and
Kenichi Aoki, pp. 45–65. Springer Japan, Tokyo.

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

HOW TO SERIES

6 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | Month 2019

http://ncase.me/polygons/
http://ncase.me/polygons/
http://ncase.me/polygons/
http://bit.ly/ABMBiblio
iromanow
Sticky Note
Publisher location: Washington. Pages: 161-194

iromanow
Sticky Note
please replace
bit.ly/ABMBiblio
with
bit.ly/ABMbiblio
(lower case b)

iromanow
Sticky Note
39-49

iromanow
Sticky Note
Please correct:
volume 23, Issue 4, pp 1127–1161

iromanow
Sticky Note
Please remove page numbers. This is the citation format suggested by the publisher:

 Powers Simon T. and Lehmann Laurent

An evolutionary model explaining the Neolithic transition from egalitarianism to leadership and despotism281Proceedings of the Royal Society B: Biological Sciences
http://doi.org/10.1098/rspb.2014.1349

Pyka, Andreas, and Claudia Werker
2009 The Methodology of Simulation Models: Chances and Risks. Journal of

Artificial Societies and Social Simulation 12(4): paper number 1Q10 .
Raab, L. Mark, and Albert C. Goodyear

1984 Middle-Range Theory in Archaeology: A Critical Review of Origins and
Applications. American Antiquity 49(2):255–268.

Railsback, Steven F., and Volker Grimm
2011 Agent-Based and Individual-Based Modeling: A Practical Introduction.

Princeton University Press, Princeton, New Jersey.
Resnick, Mitchel

1997 Turtles, Termites, and Traffic Jams. Explorations in Massively Parallel
Microworlds. MIT Press, Cambridge, Massachusetts.

Reynolds, Craig W.
1987 Flocks, Herds and Schools: A Distributed Behavioral Model. ACM

SIGGRAPH Computer Graphics 21(4):25–34.
Rogers, J. Daniel, and Wendy H. Cegielski

2017 Opinion: Building a Better Past with the Help of Agent-Based Modeling.
Proceedings of the National Academy of Sciences 114(49):12841–12844.
DOI:10.1073/pnas.1718277114.

Romanowska, Iza
2015 So You Think You Can Model ? A Guide to Building and

Evaluating Archaeological Simulation Models of Dispersals. Human
Biology 87(3):169–192.

Romanowska, Iza, Clive Gamble, Seth Bullock, and Fraser Sturt
2017 Dispersal and the Movius Line: Testing the Effect of Dispersal

on Population Density through Simulation. Quaternary International
431:53–63. DOI: 10.1016/j.quaint.2016.01.016

Schelling, Thomas C.
1971 Dynamic Models of Segregation. Journal of Mathematical Sociology 1:

143–186.
Smith, Roger D.

2000 Simulation. Encyclopedia of Computer Science. Nature Publishing GroupQ11 .
van Havre, Grégoire

2018 ArcheoBM, https://github.com/gvanhavre/ArcheoBM.Q12 DOI: 10.5281/
zenodo.1342668

Wheatley, David
2004 Making Space for an Archaeology of Place. Internet Archaeology 15.

DOI:10.11141/ia.15.10Q13 .

Whitley, Thomas G
2016 Archaeological Simulation and the Testing Paradigm. In Uncertainty and

Sensitivity Analysis in Archaeological Computational Modeling, edited by
Marieka Brouwer Burg, J. H. M. Peeters, and William A. Lovis, pp. 131–156.
Springer International Publishing, Switzerland.

Wilensky, Uri
1999 NetLogo. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, Illinois, https://ccl.north-
western.edu/netlogo/, accessed March 15, 2019.

Wren, Colin D., Julian Z. Xue, Andre Costopoulos, and Ariane Burke
2014 The Role of Spatial Foresight in Models of Hominin Dispersal. Journal of

Human Evolution 69:70–78.
Wurzer, Gabriel, Kerstin Kowarik, and Hans Reschreiter (editors).

2015 Agent-Based Modeling and Simulation in Archaeology. Springer
International Publishing, Switzerland.

AUTHOR INFORMATION
Iza Romanowska ▪ Barcelona Supercomputing Center, Carrer de Jordi Girona,
29-31, 08034 Barcelona, Spain (iza.romanowska@bsc.es) https://orcid.org/0000-
0002-9487-2111

Stefani A. Crabtree ▪ Department of Anthropology, The Pennsylvania State
University, 410 Carpenter Building, University Park, PA 16803 (sac376@psu.edu);
Center for Research and Interdisciplinarity, 8bis rRue Charles V, 75004 Paris,
France; Crow Canyon Archaeological Center, 23390 C R K, Cortez, CO 81321
https://orcid.org/0000-0001-8585-8943

Kathryn Harris ▪ Science & Technology Policy Fellow, The American
Association for the Advancement of Science and The American
Geophysical Union, 2000 Florida Avenue. NW, Washington, DC 20009
(kaharris@wsu.edu)

Benjamin Davies Q1▪ Department of Anthropology, University of Utah, 260
S. Central Campus Drive, Room 4625, Salt Lake City, UT 84112

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

HOW TO SERIES

Month 2019 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 7

https://github.com/gvanhavre/ArcheoBM
https://github.com/gvanhavre/ArcheoBM
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
mailto:iza.romanowska@bsc.es
mailto:sac376@psu.edu
mailto:kaharris@wsu.edu
iromanow
Sticky Note
Please remove the words 'paper number' The citation format suggested by the publisher is the following:

Pyka, Andreas and Werker, Claudia (2009). 'The Methodology of Simulation Models: Chances and Risks'. Journal of Artificial Societies and Social Simulation 12(4)1 <http://jasss.soc.surrey.ac.uk/12/4/1.html>.

iromanow
Sticky Note
London, UK

iromanow
Sticky Note
Please replace 'ArchaeoBM' to 'Archaeology Based Modelling: A few NetLogo models for archaeology classes.'

iromanow
Sticky Note
This is correct (it's an online journal). The citation format suggested by the publisher is the following:
Cite this as: D. Wheatley 2004 'Making space for an archaeology of place', Internet Archaeology 15. https://doi.org/10.11141/ia.15.10

iromanow
Sticky Note
Please correct dr Crabtree's affiliations to:
Utah State University Department of Environment and Society, 5200 Old Main Hill, Logan UT 84322

The Santa Fe Institute, 1399 Hyde Park Rd. Santa Fe, NM, USA

The Center for Research and Interdisciplinarity, 8 bis Rue Charles V Paris 75004, France

Crow Canyon Research Institute, 23390 C R K, Cortez, CO 81321

iromanow
Sticky Note

iromanow
Sticky Note
Dr Davies orcid number is: 0000-0002-9066-098X

1

Tutorial 1: The base model

This tutorial is based on the Neutral Model of Stone Raw Material Procurement developed by

Jeffrey Brantingham. Brantingham’s (2003) highly influential article was the first application of

agent-based modeling to the topic of procurement, curation and spatial distribution of raw material

used for lithics production in prehistory. Brantingham sought to develop from first principles a

model of raw material curation, that is, a base model stripped of any behavioral assumptions that

could be then compared to the lithics assemblages found at archaeological sites. Essentially, he

asked how these assemblages would look if the processes leading to their creation were random

(Brantingham 2003: 490).

The main premise behind the model is to establish the pattern of assemblage variability under

neutral conditions of no behavioural biases (for example, without a preference for any particular

raw material type and no specific type of mobility). In the simulation, a single agent-forager follows

a random walk (see O’Sullivan and Perry 2013, ch 4) through a uniform landscape dotted with

raw material sources. The agent collects raw material indiscriminately whenever s/he comes

across a source. When a raw material source is encountered their toolkit is filled up until it contains

100 pieces and the agent continues their journey. At every step one piece is deposited on the

current grid cell. There is no specific foraging/movement strategy or any preference for a particular

type of raw material.

The outline of the simulated processes is given in Fig. 1. In

the setup phase a 500x500 cells world is seeded with 5000

unique raw material sources. Each raw material type is

present at only one cell and their distribution is random. In the

second phase the agent is initialised with an empty toolkit.

Once the setup phase is completed the time clock is started.

In each time step the agent either moves to one of the 8

neighbouring cells chosen at random or stays put. If the toolkit

is not empty, the agent drops one randomly chosen item. If

the cell the agent is on is a raw material source the agent

reprovisions the toolkit unless it is full. The cycle move-drop-

reprovision repeats until the simulation is stopped. The

richness of the toolkit (the number of unique raw materials) as

well as the variability of assemblages composed of items

dropped by the agent are recorded throughout the simulation.

In this tutorial we will try to replicate Brantingham’s model as

accurately as possible. It will take approximately two hours to

complete. It has been built and tested in NetLogo 6.0.1. For

installing instruction and more in-depth explanations see

Romanowska et al. 2019 Supplementary Information B.

Figure 1.0.1. Flowchart of the Neutral
Model. Adapted and simplified from
Brantingham 2003, fig. 5.

http://patternandprocess.org/the-model-zoo/chapter-4-models/

2

1.1 NetLogo Interface

The NetLogo interface (Fig. 2) consists of three tabs: Interface, Info and Code. Let’s look at them

in turn. The Interface window consists of: the View Panel for watching the simulation, a few

buttons along the top of the window with settings and the Command Center towards the bottom

of the window, which you can use to directly alter or inspect any element of the simulation.

Figure 1.2. The Netlogo Interface.

We are first going to change the size of our simulation window to accommodate a much larger

view. Click on the ‘Settings’ button in the top menu to adjust the view panel. First change the

‘Location of origin:’ to ‘Corner’ and choose ‘Bottom left’ from the drop down menu. We need a

much larger area than the default so replace the values in max-pxcor and max-pycor to 499 (the

coordinates of the first patch start at 0 0 so setting maximum x and y to 499 gives a 500x500

square). However, this means that if we keep the size of patches (grid squares) as large as it is

now the screen will be enormous. Change the ‘Patch size’ to 1.0 and hit ‘Apply’. You might have

noticed the two tick boxes ‘World wraps horizontally’ and ‘World wraps vertically’. If ticked they

provide continuity between the edges of the screen, i.e., if the agent moves right while standing

on the right-most patch it will appear on the left-most patch; this is known as a torus world as it

doesn’t have edges. Check that both tick boxes are ticked and hit ‘OK’. This will get you back to

the main “home” image. If you do not like the size of the view panel, right click anywhere on it,

choose ‘Select’ from the dropdown menu and drag one of the corners until the size is ok - note

that this only changes the size of the patches, their number (500 by 500) remains the same.

3

1.2 The setup and the go procedures

The backbone of almost all NetLogo simulations

are two procedures: ‘setup’ and ‘go’. The setup

procedure is used to initialise the simulation, i.e.,

to create the starting population of agents and to

their environment. The go procedure is the main

simulation loop where in each time step the

agents and the environment undergo a series of

actions.

Click on the ‘Add’ button and then click anywhere

on the white space. A dialogue box (Fig. 3) should

pop up. Write setup in the ‘Commands’ box and

click OK. Follow the same steps to create a

second button and write go in the ‘Commands’

box. This time also tick the ‘Forever’ box. This

means that this action will be repeated until the simulation ends.

You can see that the text on both buttons has instantly turned red, indicating an error - this is

because we have not yet defined what we mean by ‘setup’ and ‘go’ within the code. Let’s move

to the Code Tab to fix it. The Code Tab consists mostly of a white text box, the code box, and a

few buttons towards the top, which we will inspect in a moment. We will start with setting up the

two procedures. Type the following in the code box:

to setup

end

to go

end

The words to and end delimit all NetLogo procedures. If you now click on the ‘Procedures’ button

at the top of the screen, you will find that ‘setup’ and ‘go’ are already there. To the left is the

debugger button ‘Check’ - if you click on it, it will check if the basic syntax of the code is correct.

1.3 The setup procedure

Logo - the language of NetLogo - was developed to resemble a natural language as much as

possible, which means that it is very easy to understand the code. It was also developed with

educational goals in mind (read: teaching kids), which means that it is equally easy to write. We

will start with setting up the environment by asking each patch to set a number of variables: colour,

whether they are a raw material source patch or not and the list of dropped lithics it contains. In

addition, we will use the standard NetLogo functions that ensure that every time we hit the setup

button the remains of the previous runs are removed. All commands directed at turtles and

patches are initiated by the word ask and enclosed in square brackets [], here we will make use

Figure 1.3. The button window.

4

of them for the first time. Type inside the setup procedure (i.e., between to setup and end), so

that it looks like this:

to setup

clear-all

ask patches[

 set pcolor white

 set source? false

 set assemblage []

]

reset-ticks

end

In the first line we use the clear-all primitive to wipe clean any remnants of the previous runs.

Similarly the last line of the setup procedure is always dedicated to resetting the time counter

using the reset-ticks primitive. Primitive is NetLogo jargon for an in-built function, that is

defined in the NetLogo library. Check out the NetLogo dictionary

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html) for a full list of primitives. Coming back

to the code, we set up the environment by asking patches: 1) to set their color to white, 2) to set

their status as a source of raw material (we will ask them all to be a no-source for now), and 3) to

start a list in which we will record whether any artefacts have been dropped on this particular

patch during a run. The flow of the program is governed by brackets and it is very easy to lose

track of how many you have opened already. To avoid confusion once you open a bracket,

immediately close it and write the code inside. The indentation does not matter, but it makes the

code easier to read so we recommend using it. Hit the ‘Check’ button to see if there are any errors.

And there are. There always are. The message: ‘Nothing named SOURCE? has been defined.’

appeared at the top of the screen. Indeed, we tried to set the variable source? to false without

defining it first. Congratulations on seeing your first code error!

Variables are often used to describe the characteristics of agents, patches and the world. For

example, an agent can have age, gender, energy, cultural marker or any other feature relevant to

the model. These variables may change throughout the simulation run (e.g., age, energy) or

remain static (e.g., gender, cultural marker). There are two types of variables in NetLogo’s syntax:

1) global variables, used throughout the code, which must be listed at the beginning of the code

or defined using Interface items (we will come back to this), and 2) local variables, defined by

the let primitive, which are only valid within one procedure. We will see the use of local variables

later on, but the source? is a global one - it is a characteristic of all the patches. We will set its

value in the setup procedure and it will remain unchanged throughout the run. The same applies

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html

5

to the assemblage list so we will also define it as a global variable. Type at the beginning of the

code (before “to setup”):

patches-own [source? assemblage]

And hit the ‘Check’ button; there should be no errors. If you now

go to the Interface tab and click on the ‘setup’ button, you will

see that the screen went white. Right click anywhere within the

view panel and choose ‘inspect patch ...’ from the drop down

menu. It will show you (Fig. 4) a list of patch variables, including

some of the built-in ones such as the x and y coordinates and

the patch color, but also the two we have defined ourselves:

source? and assemblage.

The white screen is not very exciting so let’s set up the patches

that are raw material sources. Because we do not want ALL the

patches to be a source we will use the n-of (number of)

primitive. Each raw material source needs to be unique so we

will give them a different id. Type inside the setup command,

after the first command block but before the reset-ticks.

let r 1

ask n-of 5000 patches [

set source? true

set material_type r

set r r + 1

set pcolor black

]

The first thing we do here is to define a local variable r and set it up as 1. We then ask 5000

patches 1) to change their source? status to true, 2) to set the material_type as the unique

id r, 3) to then add 1 to r so that the next patch gets the next (r+1) id, and finally 4) we will

change their colour to black to see where the raw material source patches are. Hit the ‘Check’

button. A familiar error message appears. But this time you know what to do! Add

material_type in the list of patch variables (patches-own) at the beginning of the code:

patches-own [source? assemblage material_type]

Move to the Interface tab and hit the ‘setup’ button. You can now inspect one of the source

patches by right clicking on it and choosing ‘Inspect Patch ...’ from the drop down menu. You will

see in the pop-up window that the value of source? is true.

We have now created the environment, but not the agents. We actually only need one but we

should give her/him quite a few variables such as the initial location and looks as well as a

maximum number of lithics s/he can carry and a list to keep track of them. Type after the patches

setup procedures but before reset-ticks:

Figure 4 Inspect
patch window.

Figure 1.4. Inspect patch window.

6

 crt 1 [

 setxy random max-pxcor random max-pycor

 set color red

 set size 10

 set shape "person"

 set max_carry 100

 set toolkit []

]

crt stands for ‘create agents’, in our case, one agent. Inside the brackets we set their initial

position to a random patch (i.e., with x and y coordinates between 0 and the current maximum -

max-pxcor and max-pycor) and add a few variables: color (notice that color applies to agents

and pcolor to patches), size and shape. We also initiate a list of all the raw material types the

agent carries in its toolkit and set up how much s/he can carry at any one time. Just like source?

or assemblage the toolkit list and the max_carry variable are global variables (you can hit

‘Check’ if you want to see the error message). However, this time they apply to agents not patches

so we need to make an turtle-specific variables lists. Write the following line at the beginning of

the code:

turtles-own [toolkit max_carry]

Here, we finally drop the bombshell - in NetLogo jargon agents are called turtles. This is the

legacy of being originally developed as an educational tool for kids. It makes for a fun code

development and all NetLogo developers sooner or later learn to love their turtles.

If you now go to the Interface tab and hit ‘setup’ you should find a red human-shaped agent on

one of the patches (Fig. 5). If you keep on pressing the setup button you will see that each time

the simulation is reset, the agent and source patches are initialised at a different (random)

location.

7

1.4 The go procedure

With the setup complete let’s move on to the go procedure, i.e., the main body of the simulation

which will be repeated until you click on the ‘go’ button again. The first thing we want the agent to

do is to move around the landscape. We have established that in each time step the agent will

move to one patch in its Moore neighborhood (that is, to the S, N, E, W or SE, SW, NE, NW of

the current location) or stay put. You can put it in a more mathematical terms as: the agent has a

1 in 9 chance of staying where it is or moving to any one of the surrounding patches. In order to

code the agent’s movement, we start the command with the keyword ask turtles and enclose

a list of functions, e.g., the move-to primitive in brackets. Type the following inside the go

procedure:

to go

ask turtles [

if random 9 > 0 [move-to one-of neighbors]

]

tick

end

Figure 1.5. The initialized simulation.

8

Let’s look at the code a bit closer. We ask all turtles (in our case there is only one) that if a random

integer (whole number) between 0 and 8 is higher than 0 then the agent should perform the

functions that are inside the brackets: move-to one-of neighbors. If it’s 0 then nothing

happens - the agent stays put. move-to, one-of and neighbors are all NetLogo primitives

and we encourage you to check them in the NetLogo dictionary

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html). We also added the tick primitive at

the end of the go procedure that moves the time counter by one. Go to the Interface tab and click

first on ‘setup’ and then on the ‘go’ button. You should see the red agent running around the world

like crazy. Use to speed slider at the top of the window to slow it down a bit. You should be able

to see that the agent moves by one patch as the time counter underneath the speed slider is

ticking forward. Click on the ‘go’ button to stop the simulation.

The next thing to do according to the flow diagram of the model (Fig. 1) is for the agent to drop

one item at each step whenever its toolbox is not empty. We will use an if-loop to check whether

there is anything to drop in the toolkit and then update both the assemblage of the patch and the

agent’s toolkit. Write the following code inside the go using another ‘ask turtles’ command

(after the final closing bracket of the movement function but before tick):

ask turtles[

 if length toolkit > 0 [

let i random length toolkit

ask patch-here [

 set assemblage fput (item i [toolkit] of myself)

assemblage

]

set toolkit remove-item i toolkit

]

]

Let’s go through the code line by line. Like in the previous code snippet we use the ‘if’ conditional

loop. This time we will only perform the functions enclosed by the first set of square brackets if

the length of the toolkit list is more than zero, i.e., the toolkit is not empty. If that is the case, we

choose at random an item with an index i from the toolbox. i is an index number between zero

and the number of items currently present in the toolkit (length toolkit) which denotes its

position in the list (as in: first, third, tenth etc.). In the next line we ask the patch on which the

agent stands (note the special primitive patch-here) to add the item (using the fput list

primitive) i of the toolkit of the turtle asking, referred to with the primitives of myself, to the

patch’s list of dropped items - assemblage. We then remove the same item from the agent’s

toolkit.

If you run the simulation and inspect the agent (click on the ‘go’ button to pause the simulation,

then right click on the agent and choose ‘inspect turtle 0’), you will notice that despite all the coding

we have just done the agent’s toolkit remains empty. That’s not what we want! But it is easy to

understand why. We have no code for picking up raw material! In short, the agent never got a

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html

9

chance to pick anything up! This cycle of writing small modular code bits and then checking the

simulation (by just running it and by inspecting its elements) is the best way of writing code. If you

try to write everything at once, chances are there will be errors and it will be much harder to find

them.

We recognise patches which contain a raw material source by their variable source? set as

true. Whenever the agent comes across one of them we want it to restock the raw material. We

will again use an if-loop to check whether the patch is a ‘source patch’ and if so fill up the agent’s

toolkit until it is full (using the while loop). Type the following code to make a new ask turtles

command inside the go procedure (after dropping procedure but before tick):

ask turtles[

if [source?] of patch-here = true [

let raw_material [material_type] of patch-here

while [length toolkit < max_carry] [

set toolkit fput raw_material toolkit

]

]

]

In the first line we ascertain that the patch is indeed a source patch. If it is not, the block of code

enclosed in the square brackets will be ignored and the program will move to the next statement

(in this case: tick). Do you remember that each raw material source has a unique ID? We need

that ID so that we know what type of raw material is added to the toolkit. The let statement sets

up a local variable raw_material to the same value as the ID (material_type) of the patch

the agent is standing on (patch-here). The variable raw_material is local, meaning it is only

recognised inside the ask turtles brackets. If you try to use is anywhere else, our favourite

error message (‘Nothing named raw_material has been defined’) would pop up. In the next line a

‘while-loop’ adds the raw_material to the toolkit list until the maximum capacity of the agent

(max_carry) is reached. Note the difference between the if- and while-loops here. If the given

condition is fulfilled (e.g., the patch-here is a source or a randomly drawn number is higher than

zero) an if-loop will perform the actions defined inside its brackets once. A while-loop will keep on

repeating them until the given condition is reached (e.g., the toolkit length is equal to the maximum

capacity of the agent).

Go to the Interface tab and run the simulation. Inspect the turtle - if you keep the inspect window

open during the run you should be able to see how the toolkit changes every time the agent comes

across a raw material source patch.

It is a bit difficult to see the raw material toolkit in the small box, so let’s create a plot that will show

the changes in the frequencies of different raw material types present in the toolkit. Click on the

drop-down list next to the ‘Add’ button at the top of the Interface tab and choose ‘Plot’. Click

anywhere on the white area outside of the view panel. A new pop-up window will appear. Write

in the ‘Name’ box: ‘Toolkit richness’. The ‘Plot pens’ box is where we specify what should be

10

plotted. The default value of plot count turtles counts the number of agents and in many

cases is very useful but since we only have one agent it does not make much sense. Delete it

and type:

plot [length (remove-duplicates toolkit)] of turtle 0

Figure 1.6. The plot interface.

This will plot the size (length) of the toolkit list once all duplicates are removed, that is the

number of unique raw material sources present in the agent’s toolkit. Every turtle has an in-built

unique number assigned to it when it is created. Since we only have one agent, its number is

zero. We specify this (of turtle 0) because otherwise the plotting function would not know

which agent’s toolkit to plot. Run the simulation (slow it down). If you compare your plot with figure

7 in Brantingham’s paper (2003) you will notice that they strongly resemble each other.

11

Congratulations you have successfully replicated a famous model!

To finish off, we will slightly extend the neutral model. Brantingham notes that the dynamics of

the simulation will change if the maximum size of the toolkit that the agent can carry is altered.

We will set up a slider to help running a series of experiments that will test it. As mentioned before,

global variables can be defined at the beginning of the code in the variables lists (patches-own,

turtles-own). However, you can also define them in the Interface tab by using a slider, a

chooser or a box. Go to the interface and click on the drop-down list next to the ‘Add’ button and

choose ‘Slider’. Then click anywhere on the white field outside of the view panel. A pop-up window

will appear. Type max_carry in the ‘Global variable’ box at the very top. You can leave the rest

of the boxes unchanged and hit OK. You immediately get an error message saying that ‘There is

already a global variable called MAX_CARRY’.

Figure 1.8. The slider variable interface.

This is because we have already defined max_carry at the beginning of the code in the

turtles_own list. Now we have two sources of a variable called max_carry (the slider and

the turtles-own list) and NetLogo does not know which one to use. Simply delete max_carry

from the turtles_own list. It should look like this now:

turtles-own [toolkit]

Figure 1.7. The plots, Brantingham versus our model.

12

Also, go to the setup procedure and delete the line set max_carry 100 in the command used

to create the agent. If you forget to remove it from the setup procedure what will happen is

NetLogo will read from the slider the value of max_carry (say 80) and then start executing the

setup procedure, but when it comes across the line in which you set max_carry 100 it will

overwrite the value set on the slider (80) to the one in the code (100). This is a common error

because it does not produce an error message (since you have not done anything illegal

according to the NetLogo syntax). Hit the ‘Check’ button and there should be no more errors. You

can now use the slider to vary how much the agent can carry in each run. Although you can use

the slider during the run, it is discouraged as the results will not be replicable. Instead change the

value before each run and compare the output of the plot. Have you noticed how the peaks of the

toolkit richness are lower and less frequent if the max_carry is set to a lower number?

This is the end of Tutorial 1. In the next one (Davies et al. 2019), we will move our model into a

real landscape generated from GIS layers. Tutorial 3 (Crabtree et al. 2019) will focus on how to

better collect the simulation output (just looking at a plot is not the greatest method) and how to

automate running the experiments (so you don’t spend days moving sliders).

To cite this document:

Romanowska, I., S. Crabtree, B. Davies, and K. Harris. 2019. “Agent-based Modeling for

Archaeologists. A step-by-step guide for using agent-based modeling in archaeological research

(Part I of III).” Advances in Archaeological Practice 7 (2).

References cited

Brantingham, P. Jeffrey

2003 A Neutral Model of Stone Raw Material Procurement. American Antiquity 68(3): 487–509.

Crabtree, Stefani, Kathryn Harris, Benjamin Davies, Iza Romanowska
2019 “Outreach in Archaeology with Agent-based modeling. A step-by-step guide for using
agent-based modeling in archaeological research (Part III of III).” Advances in Archaeological
Practice 7 (2).

Davies, Benjamin, Iza Romanowska, Kathryn Harris, Stefani Crabtree
2019 “Combining Geographic Information Systems and Agent-Based Models in Archaeology:
A step-by-step guide for using agent-based modeling in archaeological research (Part II of III).”
Advances in Archaeological Practice 7 (2).

O’Sullivan, David, and George Perry

2013 Spatial Simulation: Exploring Pattern and Process. Wiley-Blackwell, Chichester.

13

; _________________ GLOBAL VARIABLES _________________

turtles-own [toolkit]

patches-own [source? assemblage material_type]

; _________________ TO SETUP _________________

to setup

 ;;; The setup procedure is run only once at the beginning of each experiment.

 clear-all ; remove any residuals of previous experiments

; _________________ 1. Environment Setup _________________

 ;;; setup patches

 ask patches[

 set pcolor white

 set source? false ; initially all cells are set as having no raw material

 set assemblage [] ; start a list of items that the agent dropped at this location

] ; (this would be an equivalent to an archaeological 'find spot')

 ;;; setup patches with raw material

 let r 1

 ask n-of 5000 patches [; 5000 random patches become raw material sources

 set source? true ; set the variable source? as true

 set material_type r ; each will have a different raw material type

 set r r + 1 ; marked as a number between 1 and 5000

 set pcolor black

]

 ; _________________ 2. Agent Setup _________________

 ;;; create the agent and place him on a random patch, set color, size and shape

 crt 1 [

 setxy random max-pxcor random max-pycor

 set color red

 set size 10

 set shape "person"

 set toolkit [] ; start a list of items that the agent carries

]

 reset-ticks ; reset the time counter

end ; end of the SETUP procedure

14

; _________________ TO GO _________________

to go

;;; agent procedure: 1. move to one of 4 neighbouring cells; 2. drop an item from the toolkit if not

empty 3. reprovision the toolkit if a raw material source patch is encountered

 ask turtles [

 ;_________________ 1. Move _________________

 if random 9 > 0 [; if a randomly drawn no between 0 - 9 is higher than 0

 move-to one-of neighbors ; move to any one of the 8 neighbouring patches

] ; otherwise (it is 0) don’t do anything

]

 ;_________________ 2. Drop a random item from the toolkit _________________

 ask turtles [

 if length toolkit > 0 [; if the toolkit is not empty

 let i random length toolkit ; determine which item (i) will be dropped

 ask patch-here [; add item i to the 'assemblage' of the patch

 set assemblage fput (item i [toolkit] of myself) assemblage

]

 set toolkit remove-item i toolkit ; remove the item (i) from the toolkit

]

]

 ;_________________ 3. Reprovision if on a source patch _________________

 ask turtles [

 if [source?] of patch-here = true [; if you come across a patch with raw material

 let raw_material [material_type] of patch-here ; determine the type of raw material

 while [length toolkit < max_carry] [; while you still have capacity to carry more...

 set toolkit fput raw_material toolkit ; keep on adding that raw material to your toolkit

]

]

]

 tick ; time + 1

end ; end of the GO procedure

Summary of NetLogo

This document provides a general overview of NetLogo structure and syntax and can be used as a

glossary alongside the tutorials (Romanowska et al. 2019; Crabtree et al. 2019; Davies et al. 2019)

or as a quick ‘cheat-sheet’.

NetLogo (Wilensky 1999) is a user-friendly simulation platform commonly used for agent-based

modeling in social and natural sciences. It is based on the Logo language originally designed as an

educational tool for teaching programming to kids, making it a ‘low threshold, high ceiling’ platform.

NetLogo combines ease of use and quick development with high level capacity and a wide suite of

built-in tools such as visualizations, automated scenario running, etc. There are a number of other

ABM platforms (RePast, Mason, AnyLogic; overview: Abar et al. 2017) and simulations can also be

built using any of the general use programming languages (Python, C++, Java). NetLogo is by far the

most dominant ABM platform in Archaeology (Davies and Romanowska 2018) and is very popular in

social sciences and ecology. However, like every tool, NetLogo has some limitations which we discuss

at the end of the document.

1.1. Installation

NetLogo can be downloaded from https://ccl.northwestern.edu/netlogo/. It is available for Windows,

Mac OS X and Linux. The installation is a simple “point and click” and in most cases is unproblematic.

In case of any issues it is worth consulting the FAQ of the NetLogo User Manual

(https://ccl.northwestern.edu/netlogo/requirements.html).

1.2. Code building blocks

The four main entities in Netlogo are the agents (‘turtles’), the grid squares (‘patches’), the

connections between agents (‘links’) and the observer. The observer governs the simulation flow, for

example, by progressing the time counter or scheduling the order of actions. The building blocks in

NetLogo consist of commands and reporters. Built-in commands are called ‘primitives,’ user defined

ones are called ‘procedures’ and ‘reporters’. The latter calculate a value and then report it. Most

NetLogo simulations are composed of two main procedures: to setup and to go. In the setup

procedure the world and the agents are initialized and it is executed only once at the beginning of a

run. Setup may include loading up the GIS raster, creating the initial population of agents and giving

them a set of characteristics (e.g., sex, age, profession). The go procedure is the core of a model and

consists of a list of actions (often themselves procedures) that are repeated at each time step of the

simulation until the stop condition is reached. All procedures come from the observer environment

and are defined using the to and end keywords. If not specific to the observer commands apply to

one of NetLogo entities: turtles, patches, or links. Therefore, they are always enclosed between

square brackets following the keywords: ask turtles/patches/links. Figure 1 shows the

common structure of NetLogo code with a list of procedures inside the go and the ‘ask

turtles/patches’, etc. command inside each of the procedure’s definitions. It is important not to

have ‘ask turtles’ inside another ‘ask turtles’, e.g., do not use ask turtles [move] if

there is another ‘ask turtles’ inside the ‘move’ procedure - it will inevitably give you an error.

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/requirements.html

1.3. Variables

There are two types of variables in NetLogo: global and local variables. Global variables are defined

at the beginning of the code and ascribed to one of the NetLogo entities: the observer (globals []),

agents (turtles-own[]), grid squares (patches-own[]) or links (links-own[]). In the Interface

tab, button, slider, and chooser also define global variables. Global variables can be used throughout

the code and accessed via any procedure. Usually, we use global variables for things that are set at

the beginning of the run and do not change during it, such as the initial number of agents, or the

capacity of agents’ backpack.

In contrast, local variables, defined by the let primitive, can only be accessed from within the

procedure it has been defined in. For example, the following line of code:

let old_turtles turtles with [age > 50]

defines old_turtles as all turtles whose attribute age is greater than 50. We can then ask all ‘old

turtles’ to do a specific task that is different from the one performed by youngsters. However, in the

next time step, the list of ‘old turtles’ will change as some of them would have died while others would

have reached the required age. Thus, local variables are dynamic and changeable throughout the

run.

1.4. Control statements

Similar to all programming languages, NetLogo supports three main types of loops: if-loops, while-

loops and for-loops (the latter will be discussed in section 1.4, Lists). If the conditional statement of

an if-loop evaluates to ‘true’ a list of actions specified in the square brackets is performed. For

example, the following command:

ask turtles[

if energy <= 0 [die]

]

can be read as ‘ask each turtle: if your energy is equal or lower than zero, please die’. In contrast, the

while loop keeps on repeating the set of actions enclosed by the square brackets until the specified

condition is reached. For example, this command:

ask turtles [

while energy > 0 [move]

]

can be read as ‘ask each turtle to move as long as their energy is greater than zero’. It is important to

ensure that the while loop can (and will) reach the condition, otherwise the code will be run forever

(or rather, until your computer’s memory limit is reached - this is known as the ‘stack overflow’). For

example, this will give the while-loop a closure:

ask turtles [

while energy > 0 [move]

set energy energy - 1

]

1.5. Lists

A list is an object that stores multiple pieces of information. Lists are useful for keeping track of groups

of things where group membership might change over time; for example, a forager’s toolkit. A list can

be initiated using the set primitive:

set example_list [10 20 30 40 50]

Alternatively, an agentset can be used to construct a list through the primitive of, e.g.:

set turtle_ages [age] of turtles

In this case the list turtle_ages contains the values of the age variable of each turtles.

Although lists are immutable, new lists can be created on the basis of existing lists, again using the

set primitive.

set example_list replace-item 2 example_list 25

The ‘2’ in the example above represents the index of the list, i.e. the position of the item which is to

be replaced with the value ‘25’. Similar, to most programming languages the indexing in NetLogo

starts with zero, i.e., the index of the first element of the list is 0, the second: 1, the third: 2, etc.

The for-loop mentioned above allows the user to perform an action on each element of the list. If we

would like to inspect the content of the example_list after it was altered we can use:

foreach example_list show

and the result should be (if you executed the previous example):

10

25

30

40

50

We can also use foreach in conjunction with the arrow reporter to iterate through a list. For example

(foreach example_list example_list

 [[a b] -> show word "the sum is: " (a + b)])

Which tells NetLogo to use example_list as input and add corresponding integers together (e.g.,

10+10) and report that in the command line.

The result should be (if you executed the previous example):

20

50

60

80

100

The examples above are intended as a general reference only. We will guide the reader through the

process of building a simulation in NetLogo and discuss the code elements in a more comprehensive

manner in the tutorial.

1.6. NetLogo resources

There are many freely-available learning resources for ABM and NetLogo on the Internet. NetLogo

documentation (NetLogo 2018), which includes tutorials, a programming guide and a full dictionary of

NetLogo primitives is usually the first port of call for any technical inquiries. However, there are many

other ABM- and NetLogo- dedicated websites, blogs, code repositories and user groups.

simulatingcomplexity.wordpress.com run by the authors of this tutorial is a specialized blog on

archaeological applications of computational modeling and complexity science. The Special Interest

Group in Complex Systems Simulation holds an annual beginner workshop in NetLogo as well as

sessions and roundtables at the Computer Application and Quantitative Methods in Archaeology -

CAA conference (https://caa-international.org/), while the European Social Simulation Association -

ESSA (http://www.essa.eu.org/) organizes a week-long summer school in social simulation as a

satellite to its annual conference. In addition, the Complex Systems Society annual conference - CSS

(https://cssociety.org/) usually features at least one session (satellite) dedicated to archaeology.

There are other, domain specific training courses available.

There are a number of university-level textbooks which use NetLogo to show the principles of complex

systems modeling in ecology (Railsback and Grimm 2011), geography (O’Sullivan and Perry 2014),

social science (Gilbert and Troitzsch 2005; Miller and Page 2007) and economy (Hamill and Gilbert

2016).

Not all simulations need to be written from scratch. NetLogo comes with a large and growing library

of models. With over two hundred agent-based models the Models Library (accessible through the

user interface of NetLogo) contains many examples, which, although developed for other disciplines

from mathematics and physics to ecology and transport, could be adapted to archaeological research.

For instance, epidemiological models simulating the spread of a disease in human populations under

different conditions share many characteristics with theoretical models of the diffusion of innovations.

In addition, many authors working on archaeological case studies share their model’s code after

publication in the OpenABM (https://www.comses.net/) repository and increasingly also on GitHub

(https://github.com/).

1.7. When to switch to a different platform

Given how easy it is to develop agent-based models in NetLogo and how popular it is among social

scientists and in other disciplines, you may ask yourself: ‘why would anyone use any other software?’

Like every tool, NetLogo has its tradeoffs and it is important to know its ‘weaknesses’ in order to

minimize their impact on one’s research. The three main limitations of NetLogo are: 1. The high level

of the programming language, 2. The lack of some of the standard software development tools, and

3. The performance.

The high level of the programming language is the exact reason why it is not difficult to learn to code

in NetLogo. You ‘ask turtles’ to ‘forward 1’. It’s easy to write, it’s easy to read, but what exactly does

it do? The simplicity of coding comes at a price of not having a full control over the code. For example,

it is all too common to (erroneously) assume that the primitive ‘forward 1’ makes all turtles move to

the next patch ahead. It looks so obvious that hardly anyone checks the documentation to see whether

this is actually the case (it is not). But these checks should be done. NetLogo documentation is

extensive, thorough and openly available. It is important to constantly test the code during

development to be sure it is doing exactly what one thinks it is doing. Unfortunately, NetLogo lacks

https://simulatingcomplexity.wordpress.com/
https://caa-international.org/
https://caa-international.org/
http://www.essa.eu.org/
http://www.essa.eu.org/
https://cssociety.org/home
https://cssociety.org/
https://www.comses.net/
https://www.comses.net/
https://github.com/
https://github.com/

some of the standard software development tools, for example, for testing code. This is a weakness

that we hope will be soon addressed by its developers, but in the meantime it is crucial that the

modeler runs a wide variety of tests to minimize the risk of code errors. It is commonly done using the

‘print’ primitive (e.g., by asking one of the turtles to print out the results of calculations it is performing

and checking that they are within the expected ranges) or by running ‘special’ scenarios (e.g., with no

agents or only one agent to check that the algorithms function correctly). Also, the ‘inspect’ and ‘watch’

functions as well as the ‘pen-down’ primitive may come very handy in checking the code.

Finally, the performance issue. NetLogo is not a tool for highly optimized simulations. Also, it has no

code parallelization capacity or any other support for HPC (High Performance Computing) so even a

supercomputer may not be able to save you. If you need to run your simulation 300,000 times,

NetLogo is not going to cut it. This limits, for example, the parameter ranges one can test or the

number of runs performed to deal with the stochasticity of the model. It is common that the modeler

finds themself (usually about 6 months before the end of a project) with a model that takes 20 minutes

to run from start to finish. If they need to run scenarios with 4 parameters, and each one has 10 values

that need to be tested, plus each run needs to be repeated 10 times because of stochasticity then we

are talking about three and a half years before the results come in and let’s hope that the code does

not have a bug and needs to be run again. However, there are tools that can help optimize the code,

in particular, the profiler (https://simulatingcomplexity.wordpress.com/2015/03/23/netlogo-profiler/)

On the other hand, it is much easier to implement a working simulation developed in NetLogo in one

of the fast programming languages, such as Python or Java, than to develop it there from scratch.

Thus, it is not unusual for archaeologists to start their ABM adventure with NetLogo and then move

to other programming languages and simulation platforms while still using NetLogo to prototype their

models. As one of the reviewers of this paper noted: “I would not make the argument that learning

Netlogo will make you an ABM expert over all platforms. It is a good start though.” We hope that this

set of tutorials will help you kick start such a journey.

To cite this document:

Romanowska, Iza, Stefani Crabtree, Benjamin Davies, and Kathryn Harris

2019 “Agent-based Modeling for Archaeologists. A step-by-step guide for using agent-based

modeling in archaeological research (Part I of III).” Advances in Archaeological Practice 7

(2).

References cited

Abar, Sameera, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P. O’Hare
2017 “Agent Based Modeling and Simulation Tools: A Review of the State-of-Art Software.”
Computer Science Review 24: 13-33. Elsevier Inc.: 13–33. doi:10.1016/j.cosrev.2017.03.001.

Crabtree, Stefani, Kathryn Harris, Benjamin Davies, Iza Romanowska
2019 “Outreach in Archaeology with Agent-based modeling. A step-by-step guide for using
agent-based modeling in archaeological research (Part III of III).” Advances in Archaeological
Practice 7 (2).

Davies, Benjamin, Iza Romanowska, Kathryn Harris, Stefani Crabtree
2019 “Combining Geographic Information Systems and Agent-Based Models in
Archaeology: A step-by-step guide for using agent-based modeling in archaeological research
(Part II of III).” Advances in Archaeological Practice 7 (2).

Davies, Benjamin, and Iza Romanowska

https://simulatingcomplexity.wordpress.com/2015/03/23/netlogo-profiler/
https://simulatingcomplexity.wordpress.com/2015/03/23/netlogo-profiler/

2018 “An Emergent Community? Agent Based Modelers in Archaeology.” The SAA
Archaeological Record 18(2): 27–32.

Gilbert, Nigel G., and Klaus G. Troitzsch
2005 Simulation for the Social Scientist. Open University Press, Maidenhead.

Hamill, Lynne, and Nigel Gilbert
2016 Agent-based modeling in economics. Wiley, Chichester.

Miller, John H., and Scott E. Page
2007 Complexity in Social Worlds. Princeton University Press, Princeton.

O’Sullivan, David, and George Perry
 2013 Spatial Simulation: Exploring Pattern and Process. Wiley-Blackwell, Chichester.

OpenABM
2014 Open Agent Based Modeling Consortium. A node in the CoMSES Network.
https://www.openabm.org

Railsback, Steven F., and Volker Grimm
2011 Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton

University Press, Princeton.

Romanowska, Iza, Stefani Crabtree, Benjamin Davies, and Kathryn Harris

2019 “Agent-based Modeling for Archaeologists. A step-by-step guide for using agent-

based modeling in archaeological research (Part I of III).” Advances in Archaeological

Practice 7 (2).

Wilensky, Uri
1999 “NetLogo.” Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston. https://ccl.northwestern.edu/netlogo/, accessed February
2, 2016.

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/

