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ABSTRACT

Formal models of past human societies informed by archaeological research have a high potential for shaping some of the most topical
current debates. Agent-based models, which emphasize how actions by individuals combine to produce global patterns, provide a con-
venient framework for developing quantitative models of historical social processes. However, being derived from computer science, the
method remains largely specialized in archaeology. In this paper and the associated tutorial, we provide a jargon-free introduction to the
technique, its potential and limits as well as its diverse applications in archaeology and beyond. We discuss the epistemological rationale of
using computational modeling and simulation, classify types of models, and give an overview of the main concepts behind agent-based
modeling.
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Modelos cuantitativos robustos de sociedades humanas en el pasado tienen el potencial de informar los temas de debate actual, parti-
cularmente modelos informados por estudios de arqueología. Modelos basados en sistemas multiagente proveen un marco práctico para
explorar modelos cuantitativos de sociedades en el pasado. Aun así, al ser un método de informática no es aún bien establecido entre la
mayoría de arqueólogos. En este artículo y el tutorial que lo acompaña, proveemos una introducción a estos métodos, libres de jerga
técnica, su potencial y sus límites, y también las diversas aplicaciones en arqueología. Además, discutimos la epistemología de utilizar
modelos computacionales y de simulación, clasificamos los tipos de modelos, y proveemos un resumen de los conceptos principales de los
modelos multiagente.

Palabras clave:Q2

Archaeology is uniquely positioned to use modern technology to
understand the long trajectory of human history. The time-depth
of archaeological inquiry allows researchers to investigate
long-term and large-scale trends in human behavior, such as the
evolution of social hierarchy (Crabtree et al. 2017), the changes in
subsistence strategies (Powers and Lehmann 2014), or the
resilience of human groups in the face of natural disasters
(d’Alpoim Guedes et al. 2016). Just as material culture studies
greatly benefited from the introduction of formal statistical tools,
many current conceptual models— often grouped under the
umbrella term of “theory building”—would benefit from a
systematic and formal approach of computational modeling
(d’Alpoim Guedes et al. 2016; Lake 2014).

One class of computational models that has been used increas-
ingly in archaeology over the past two decades is agent-based
modeling. Researchers studying archaeological systems world-
wide have adopted this formal modeling technique to approach
their research questions (e.g., Cegielski and Rogers 2016; Kohler
2012; Linde and Romanowska 2018; Madella et al. 2014; Perry et al.
2016; Rogers and Cegielski 2017; Romanowska 2015; Wurzer et al.
2015). Archaeologists use agent-based modeling to understand

archaeological patterns across a range of temporal and spatial
settings (e.g., Angourakis et al. 2014; Balbo et al. 2014; Morrison
and Allen 2017; Perrault and Brantingham 2011; Premo 2015; Wren
et al. 2014).

Our own experiences with simulation reflect this topical diversity,
as we have used simulation to explore the development of the
wine industry during the Bronze to Iron Age transition in Littoral
France (Crabtree 2016), exchange practices and the development
of hierarchy in the US Southwest (Crabtree 2015; Crabtree et al.
2017), Pleistocene hominin dispersals (Romanowska et al. 2017),
and the formation of archaeological landscapes in Australia
(Davies et al. 2015). Although the scenarios are simulated, the
implications for research are real. For example, Lake (2014)
discusses how formal reaction-diffusion models and long-term
evolutionary models have already helped to move research
forward on different aspects of human origins studies, noting that
agent-based models have the potential to address many other
areas of inquiry.

In this article and in the accompanying tutorial, we walk the reader
through the process of building an agent-based simulation using
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an example of a model used to understand toolkit richness
(Brantingham 2003). Lithics are commonly used to develop
hypotheses about the behavior of their makers, but the causal
relationship between any particular foraging strategy and the
composition of lithic assemblages remains unclear. Using
this example, we show how Brantingham’s model enables
researchers to use archaeological data (patterns in lithic
assemblages) to identify behavior of people in the past
(foraging strategies).

This is the first in a series of three articles and tutorials on
agent-based modeling. A recent survey (Davies and Romanowska
2018) showed that the majority of archaeological modelers
had to depend on self-teaching and peer support to acquire
skills necessary to build their simulations. Although other
agent-based modeling tutorials exist (e.g., Grimm and Railsback
2011) this series is unique in that it presents a case study
of an archaeological system. We have also kept it largely jargon
free with the intention of presenting the method to researchers
with no previous experience in computational modeling.

In Part 1, we discuss the definition and function of agent-based
models and introduce some key concepts in simulation. In the
associated tutorial, we show how to build a simple hypothesis-testing
agent-based model using a user-friendly, open-source, cross-
platform simulation framework—NetLogo (Wilensky 1999)—and
provide an outline of programming concepts. Part 2 (Davies et al.
2019) builds on this tutorial and incorporates realistic geographic
information systems dataplanes to move the model from abstract to
more realistic. Finally, in Part 3 (Crabtree et al. 2019), we demonstrate
how agent-based models can be used for outreach to explain
archaeological patterns to the public, whereas the associated tutorial
will focus on analyzing the results.

WHY MODEL? AND IF SO, HOW
TO MODEL?
Simulation has been hailed as the third leg of the scientific tripod:
a qualitatively new scientific method falling between theoretical
and empirical research (Axelrod 2006; Epstein 2006; Hartmann
1996; Kohler 2012). For example, Axelrod says:

Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike
deduction, it does not prove theorems. Instead, a simulation
generates data that can be analyzed inductively. Unlike
typical induction, however, the simulated data comes from a
rigorously specified set of rules rather than direct measure-
ment of the real world [Axelrod 2006:95, emphasis added].

In fact, as Whitley (2016) points out, archaeologists commonly
engage in what can be called “an analogue simulation.” For
instance, flintknapping experiments aimed at replicating past
techniques or reenactments of medieval battles do not differ from
computer simulation in the normative sense. Both start with a
model—that is, a set of basic assumptions (e.g., knapping was
performed using hands)—and are validated by comparing the
simulation results (e.g., the shape and dimensions of a knapped
stone tool) with the available data (e.g., archaeological artifacts).

Simulation is an established scientific tool, widely used across the
natural and social sciences, as well as outside of academia, where
it is commonly applied in industry, economics, and policy making
(e.g., Abergel et al. 2014; Chattoe-Brown 2013; Davidsson and
Verhagen 2013; Farmer and Foley 2009; Hammond 2015;
Hartmann 1996; Mitchell 2009; Pyka and Werker 2009). Although
there are many different types of simulation techniques, they share
a number of characteristics.

At the core of every simulation is a model—a simplified
representation of a real-world system, composed of entities and
the relationships between them. In the philosophy of science, a
model is defined simply as a set of assumptions (Godfrey-Smith
2003). Some models can be built using observations derived from
experiments or from systems that can be directly studied. For
example, a model of a preindustrial village may assume that
people who lived in a single household were in some way related
because of what we know from the observations of modern
human groups and their family-forming behaviors. In other cases,
the dependencies or the importance of different types of entities
and processes are theorized about (known as “conceptual mod-
eling”). If we were interested in how different degrees of social
cohesion may lead over time to different habitation patterns, a
conceptual model of social interaction would form the basis of the
simulation.

Similar to a model, simulation is an artificially constructed and
simplified representation of a real-world system with all relation-
ships formally defined (known as “ontology”), but with the add-
itional dimension of time (Hofman et al. 2011; Smith 2000).
Therefore, simulation investigates changes occurring in a system
over time and space as a result of external (exogenous) factors or
the internal dynamics of the system.

The rapid rise of simulation in the 1990s came hand-in-hand with
the recognition that many (if not most) real-world systems are
complex; that is, governed by nonlinear processes, which escape
more traditional, reductionist scientific methods focused on
detailed description of system elements. Instead, it was the
interaction between these elements that explained the system
(Ladyman et al. 2013). For example, Schelling (1971) showed how a
complex pattern (racially segregated neighborhoods) may emerge
from relatively small sets of simple rules (slight incline of urban
dwellers toward settling down among people similar to them),
often defying expectations or common sense (“intolerance”—that
is, having a low tolerance for neighbors of a different type—
actually decreases segregation; see Chattoe-Brown 2013 for
discussion).

This shift in research focus from the “detail” to the “whole,”
coupled with rapidly increasing computer power available to
researchers, led to the development of complexity science.
The core idea behind complexity science is the observation that
simple interactions of multiple entities may lead to surprising
global patterns and that this connection could not be easily
deduced from studying each of the system’s elements in
isolation. This process, known as “emergence,” is often
summarized by the emblematic motto: the whole is greater than
the sum of its parts (Mitchell 2009:13). The emergent properties of
complex systems mean that simulation is the primary tool for
studying them.
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DIFFERENT TYPES OF MODELS
Hartmann (1996) recognized five main applications of simulation
techniques used across different scientific disciplines: (1) simula-
tions as a technique used to investigate the detailed dynamics of a
system; (2) simulations as a heuristic tool for developing hypoth-
eses, models, and theories; (3) simulations as a substitute for an
experiment when performing it is unfeasible or not practical; (4)
simulations as a tool for experimentalists used to support empir-
ical experiments; and (5) simulations as a pedagogical tool
allowing students and wider audiences to gain understanding of a
process. Four of them are directly applicable in the context of
traditional archaeological inquiry, whereas application (4) has
been shown to be a valuable tool in archaeologically inspired
anthropological research (Mesoudi and O’Brien 2008).

Simulation as a Technique
Many scientific disciplines can study systems by directly observing
them; for example, microbiologists may observe an organism as it
undergoes a change, and sociologists can ask a sample of the
population to share their thoughts. However, in many cases, the
actual dynamics of the system cannot be observed because the
process takes too long (e.g., macroevolution of a species), the
scale is too small (e.g., quantum physics), or the system does not
exist anymore (e.g., past societies). In those cases, simulation is
the appropriate research tool.

Simulation is a formal computational tool that reveals causal
relationships between system entities and the evolution that the
system undergoes. Equally, it allows the researchers to investigate
the impact of specific events, such as a particular initial state or
rare events, on the evolution of the system (known as “historical
contingency” or “hysteresis”). Finally, exploratory models (Premo
2010), built on the minimum set of assumptions (known as “null
models” or models from “first principles”), enable researchers to
test their beliefs about the system’s dynamics and the relative
importance of different factors influencing it. We will see the value
of this particular methodology on the archaeological example
explored in the tutorial.

Simulation as a Theory-Building Tool
Simulation is commonly used as a tool for hypothesis develop-
ment. Di Paolo and colleagues (2000) call simulation an “opaque
thought experiment” because it represents a computer-based
theoretical exercise in examining what-if scenarios (known as
“subjunctive models”; David et al. 2013). The advantage of using a
computer tool is that it can explore more complex, multiscalar and
multivariate scenarios than can ever be reliably entertained in
one’s brain. In addition, as numerous examples have shown (e.g.,
Reynolds 1987; Resnick 1997; Schelling 1971), even simple models
can unfold into surprising and counterintuitive patterns. As already
mentioned, this phenomenon is known as “emergence” (Epstein
2006). The counterintuitive nature of such conclusions means that,
by definition, they would be unlikely to be proposed as a result of
conceptual modeling “in one’s head.” SecondQ3 , modeling allows
researchers to produce archaeologically testable predictions out
of existing conceptual hypotheses, articulated in natural language.
Premo describes the role of simulation as a “virtual lab” for
“eliminat[ing] the plausible scenarios that are unlikely to have

occurred, given observed characteristics of empirical data”
(2006:108). As a result, instead of producing new theoretical
models, which do not surpass the already existing ones, formal
methods such as simulation build an increasingly strong frame-
work based on “knowledge that over time is cumulative at both a
theoretical and empirical level” (Neiman 1995:30).

Simulation as a Substitute for an Experiment
Simulation can replace an experiment in situations when practical
constraints or ethical issues come into play (for example, if the
investigated social process takes decades to evolve or if the
experiment would subject the experimental population to pro-
longed hardship). Creating an artificial society and pestering it
with climatic fluctuations, social upheavals, or natural disasters is a
way of approaching such topical subjects as long-term social
change, resilience, evolution, and impact of innovation without
referring to modern and historical analogues and anecdotal evi-
dence, or needing extensive Institutional Review Board/Ethics
Committee oversight.

This process can be exemplified by comparing middle-range
theory to simulation (Binford 1982; Kosso 1991; Premo 2007; Raab
and Goodyear 1984). Ethnoarchaeologists study modern human
groups because their behaviors and relationships can be directly
observed. The material record generated by a modern group can
then be compared with the archaeological record. If the two
resemble each other, it is concluded that it is likely that these
archaeological remains have been generated by processes similar
to the ones driving the modern human group.

Similarly, an agent-based modeler constructs an artificial society
governed by a strictly defined set of behavioral rules, making
processes and causal relationships directly observable. The con-
sequences of the simulated processes are then compared to the
patterns in archaeological data. The aim of both types of research
is to understand the dynamics of an accessible and, therefore,
well-understood system well enough to be able to infer whether
similar processes might have taken place in the past.

While modern scientists have critiqued the use of ethnoarchae-
ology (Fahlander 2004), cautioning that modern hunter-gatherers
are not archaeological groups frozen in an early development
stage (Kelly 2013), most archaeologists use ethnographic analogy
explicitly or not. This is mostly done with appropriate caution, as
researchers understand that all societies are dynamic and chan-
ging (Martelle Hayter 1994) and realize the limitations of their
models. Agent-based modelers, who are usually archaeologists
themselves, do the same.

Simulation as a Pedagogical Tool
Simulation can be used as an education tool. For example,
Resnick (1997) used StarLogo (an early version of NetLogo) to
explore the nonintuitive phenomena of emergence, decentral-
ization feedback, self-organization, and criticality among high
school students. Similarly, the interactive visualizations (known as
“explorable explanations”) of Hart and Case (2015) guide the
participants through the process of simulating social phenomena,
such as segregation, thus elucidating the real-life societal conse-
quences of seemingly innocuous individual decisions. Because of
its game-like properties, agent-based models are engaging and

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

HOW TO SERIES

Month 2019 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 3

iromanow
Sticky Note
Please replace: "Second, modelling allows researchers..." with "Another important function of modeling is that it allows researchers..."

iromanow
Sticky Note
Please replace 'on' with 'in'.

iromanow
Sticky Note
Please remove the word 'prolonged'.



fun for specialists and non-specialists alike. They can, therefore, be
an easy and cost-effective way to represent complex relationships
and ideas and to let members of the general public, stakeholders,
or students gain deep understanding of complex concepts by
performing their own experiments. For example, van Havre (2018)
has built a model of an archaeological landscape that archaeology
students can use to explore how successful different sampling
strategies will be in finding archaeology depending on the ori-
ginal distribution of artifacts. Part 3 will further explore these
themes.

AGENT-BASED MODELING (ABM)
Agent-based modeling (ABM) is considered a “bottom up”
simulation approach because it comprises heterogeneous indivi-
duals whose actions and interactions (both with each other and
with the environment) lead to emergent population-level patterns.
This method is often contrasted with Equation-based modeling
(EBM), or the “top down” approach, where the individual actors
are treated in aggregation as a homogenous population, whose
characteristics are defined by a set of variables and whose inter-
actions are described in equations (Macal and North 2010;
Railsback and Grimm 2011).

In agent-based models, agent behavior is described in a set of
rules (algorithms; Grimm et al. 2005; Ahrweiler and Gilbert 2005)
and often modeled using probabilities (i.e., stochastically). Thus,
ABM allows the researcher to model individual-driven mechan-
isms—such as cognitive processes, cultural transmission, and
communication—and to introduce heterogeneity in the popula-
tion, be it genetic/cultural diversity or even simple age and sex
differences. As a result, the method enables a crossover between
two levels of analysis: an individual perspective, which is very
much at the heart of archaeological interest, and the global or
population-level patterns representing the consequences of
aggregated individual actions, which can be compared to the
archaeological record. ABM provides a platform that facilitates the
integration of the spatial environment as one of the primary
model entities considerably (O’Sullivan and Perry 2014; see also
Part 2 in the series), and the ability to construct models out of
familiar entities (people, groups, households, etc.) rather than in
the non-natural language of equations makes agent-based mod-
els easier to consult with and communicate to the archaeological
(and public) audience (see also Part 3 in this series). Finally, the
explicit focus on individuals and agency is a particularly important
feature for archaeologists, who for decades have been concerned
with the lack of “the individual” in the focus of archaeological
practice. For example, Gamble and Porr argue that “the individual
needs to be seen as the center of causality in order to understand
why change and variation occur. It is individuals that make deci-
sions and deal with choices” (2005:7). Computational modeling,
and ABM in particular, holds great potential for addressing this
issue as it provides a formal environment for testing the relation-
ships between individual decisions, aggregated actions, and the
consequences of these actions that are represented by the arch-
aeological record.

Often, CRM archaeologists are tasked with finding explanations
for the distribution of artifacts in their project area. These expla-
nations are built on established theory, but many CRM projects do
not allow for a full-scale analysis of an entire region. Many projects

bisect sites, and archaeologists are forced to work within a
down-sampled geographic area so that they do not explore
beyond the project area. This can hamper their ability to draw
meaningful conclusions from these partial datasets. ABM enables
the use of partial data to test models and provide predictions. For
example, if a researcher wants to understand the distribution of
finds along an alluvial plain, writing a simple agent-based model
simulating the transportation of artifacts might elucidate the pat-
terns of deposition and could further predict where artifacts would
be found. Thus, ABM can serve as a type of “behaviorally driven”
predictive modeling that incorporates our knowledge of people’s
behaviors rather than one-to-one correlations. In doing so, it could
counteract the common criticism of predictive models as being a
self-fulfilling prophecy (Wheatley 2004).

For example, the members of the Village Ecodynamics Project,
despite having a survey coverage of less than 20 percent (Kohler
and Varien 2012:18), were able to create an agent-based model
that examined the growth of population and the placement of
households on the landscape. This model has been successful in
testing hypotheses on the lifeways of Ancestral Pueblo people
and has aided greatly in our understanding of the prehistory of the
area despite the less than complete survey coverage. These
themes will be explored further in the tutorial and in Part 2.

THE TUTORIAL
The tutorial based on the model by Brantingam (2003) that
accompanies this article has been written with the general arch-
aeological audience in mind. It does not assume any previous
knowledge or skill of the reader and has been presented in a very
informal and jargon-free style. In our demonstration of agent-
based modeling, we will use an existing exploratory-type model
framework to approach a new problem and apply it to a specific
case study. Tutorial 1 (Supplementary Text 1) will focus on repli-
cating the original model; Tutorial 2 (Supplementary Text in Part 2)
will place it in a semirealistic landscape; finally, Tutorial 3
(Supplementary Text in Part 3) will explore how the results can be
interpreted and communicated to stakeholders and the general
public. In addition, we have prepared a document providing a
more extended description of NetLogo structure and features that
can be used as a glossary and for further help (Supplementary
Text 2).

While simple, the model used in the tutorials is a way to start
testing the validity of common archaeological assumptions
regarding behavioral strategies presumably employed by people
in the past. This model was also chosen because it reflects one of
a few instances in which an agent-based model has been sub-
jected to a number of published reevaluations (known as “repli-
cations”; Pop 2015; Oestmo et al. 2016). Each of them expands on
the base model and leads to new insights, thereby showing how
computational modeling facilitates the building up of our under-
standing in cumulative fashion (later models build upon and
improve earlier ones rather than compete with them). For
example, Pop (2015) revisited Brantingham’s model, arguing that
the original model did not fully appreciate the difference between
the assemblage of a living forager and an archaeological assem-
blage, which might have undergone significant changes since the
moment of being deposited. Although we acknowledge the
usefulness of this extension and find his review helpful, our tutorial
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focuses on Brantingham’s original model. A further test of good
modeling practice would be applying additions from Pop (2015)
and Oestmo and colleagues (2016) to the tutorial presented
below, and we encourage students to do just that.

CONCLUSIONS
The benefits of using formal models for theory building and
hypothesis testing in an academic environment are manifold.
Although conceptual modeling will always have a place in science,
building formal models, such as simulations, can enable a deeper
understanding of complex processes that incorporate a temporal
and spatial dimension. Simulations can also enable researchers to
eliminate hypotheses that sound plausible yet do not concur with
the archaeological record by thoroughly examining simulated
output. Finally, simulations can produce predictions that can be
tested on the ground with carefully focused empirical research.
Consequently, field-based, lab-based, and computer-based
research are not in competition but rather complement each
other. We argue that using them together is the best way to bring
us closer to understanding the lives of peoples in the past.

Supplementary material
For supplemental material accompanying this article, visit https://
doi.org/10.1017/aap.2019.6

Supplementary Text 1. Tutorial 1: The Base Model

Supplementary Text 2: Summary of NetLogo
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Tutorial 1: The base model 

 

This tutorial is based on the Neutral Model of Stone Raw Material Procurement developed by 

Jeffrey Brantingham. Brantingham’s (2003) highly influential article was the first application of 

agent-based modeling to the topic of procurement, curation and spatial distribution of raw material 

used for lithics production in prehistory. Brantingham sought to develop from first principles a 

model of raw material curation, that is, a base model stripped of any behavioral assumptions that 

could be then compared to the lithics assemblages found at archaeological sites. Essentially, he 

asked how these assemblages would look if the processes leading to their creation were random 

(Brantingham 2003: 490).  

The main premise behind the model is to establish the pattern of assemblage variability under 

neutral conditions of no behavioural biases (for example, without a preference for any particular 

raw material type and no specific type of mobility). In the simulation, a single agent-forager follows 

a random walk (see O’Sullivan and Perry 2013, ch 4) through a uniform landscape dotted with 

raw material sources. The agent collects raw material indiscriminately whenever s/he comes 

across a source. When a raw material source is encountered their toolkit is filled up until it contains 

100 pieces and the agent continues their journey. At every step one piece is deposited on the 

current grid cell. There is no specific foraging/movement strategy or any preference for a particular 

type of raw material. 

The outline of the simulated processes is given in Fig. 1. In 

the setup phase a 500x500 cells world is seeded with 5000 

unique raw material sources. Each raw material type is 

present at only one cell and their distribution is random. In the 

second phase the agent is initialised with an empty toolkit. 

Once the setup phase is completed the time clock is started. 

In each time step the agent either moves to one of the 8 

neighbouring cells chosen at random or stays put. If the toolkit 

is not empty, the agent drops one randomly chosen item. If 

the cell the agent is on is a raw material source the agent 

reprovisions the toolkit unless it is full. The cycle move-drop-

reprovision repeats until the simulation is stopped. The 

richness of the toolkit (the number of unique raw materials) as 

well as the variability of assemblages composed of items 

dropped by the agent are recorded throughout the simulation.  

In this tutorial we will try to replicate Brantingham’s model as 

accurately as possible. It will take approximately two hours to 

complete. It has been built and tested in NetLogo 6.0.1. For 

installing instruction and more in-depth explanations see 

Romanowska et al. 2019 Supplementary Information B. 

 

Figure 1.0.1. Flowchart of the Neutral 
Model. Adapted and simplified from 
Brantingham 2003, fig. 5. 

http://patternandprocess.org/the-model-zoo/chapter-4-models/
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1.1 NetLogo Interface 

The NetLogo interface (Fig. 2) consists of three tabs: Interface, Info and Code. Let’s look at them 

in turn. The Interface window consists of: the View Panel for watching the simulation, a few 

buttons along the top of the window with settings and the Command Center towards the bottom 

of the window, which you can use to directly alter or inspect any element of the simulation.   

 
Figure 1.2. The Netlogo Interface. 

We are first going to change the size of our simulation window to accommodate a much larger 

view. Click on the ‘Settings’ button in the top menu to adjust the view panel. First change the 

‘Location of origin:’ to ‘Corner’ and choose ‘Bottom left’ from the drop down menu. We need a 

much larger area than the default so replace the values in max-pxcor and max-pycor to 499 (the 

coordinates of the first patch start at 0 0 so setting maximum x and y to 499 gives a 500x500 

square). However, this means that if we keep the size of patches (grid squares) as large as it is 

now the screen will be enormous. Change the ‘Patch size’ to 1.0 and hit ‘Apply’. You might have 

noticed the two tick boxes ‘World wraps horizontally’ and ‘World wraps vertically’. If ticked they 

provide continuity between the edges of the screen, i.e., if the agent moves right while standing 

on the right-most patch it will appear on the left-most patch; this is known as a torus world as it 

doesn’t have edges. Check that both tick boxes are ticked and hit ‘OK’. This will get you back to 

the main “home” image. If you do not like the size of the view panel, right click anywhere on it, 

choose ‘Select’ from the dropdown menu and drag one of the corners until the size is ok - note 

that this only changes the size of the patches, their number (500 by 500) remains the same.  
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1.2 The setup and the go procedures 

The backbone of almost all NetLogo simulations 

are two procedures: ‘setup’ and ‘go’. The setup 

procedure is used to initialise the simulation, i.e., 

to create the starting population of agents and to 

their environment. The go procedure is the main 

simulation loop where in each time step the 

agents and the environment undergo a series of 

actions. 

Click on the ‘Add’ button and then click anywhere 

on the white space. A dialogue box (Fig. 3) should 

pop up. Write setup in the ‘Commands’ box and 

click OK. Follow the same steps to create a 

second button and write go in the ‘Commands’ 

box. This time also tick the ‘Forever’ box. This 

means that this action will be repeated until the simulation ends. 

You can see that the text on both buttons has instantly turned red, indicating an error - this is 

because we have not yet defined what we mean by ‘setup’ and ‘go’ within the code. Let’s move 

to the Code Tab to fix it. The Code Tab consists mostly of a white text box, the code box, and a 

few buttons towards the top, which we will inspect in a moment. We will start with setting up the 

two procedures. Type the following in the code box:  

to setup 

end 

to go 

end 

The words to and end delimit all NetLogo procedures. If you now click on the ‘Procedures’ button 

at the top of the screen, you will find that ‘setup’ and ‘go’ are already there. To the left is the 

debugger button ‘Check’ - if you click on it, it will check if the basic syntax of the code is correct.  

1.3 The setup procedure 

Logo - the language of NetLogo - was developed to resemble a natural language as much as 

possible, which means that it is very easy to understand the code. It was also developed with 

educational goals in mind (read: teaching kids), which means that it is equally easy to write. We 

will start with setting up the environment by asking each patch to set a number of variables: colour, 

whether they are a raw material source patch or not and the list of dropped lithics it contains. In 

addition, we will use the standard NetLogo functions that ensure that every time we hit the setup 

button the remains of the previous runs are removed. All commands directed at turtles and 

patches are initiated by the word ask and enclosed in square brackets [], here we will make use 

Figure 1.3. The button window. 
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of them for the first time. Type inside the setup procedure (i.e., between to setup and end), so 

that it looks like this: 

to setup 

clear-all 

ask patches[ 

  set pcolor white 

  set source? false 

  set assemblage [] 

] 

reset-ticks 

end 

In the first line we use the clear-all primitive to wipe clean any remnants of the previous runs. 

Similarly the last line of the setup procedure is always dedicated to resetting the time counter 

using the reset-ticks primitive. Primitive is NetLogo jargon for an in-built function, that is 

defined in the NetLogo library. Check out the NetLogo dictionary 

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html) for a full list of primitives. Coming back 

to the code, we set up the environment by asking patches: 1) to set their color to white, 2) to set 

their status as a source of raw material (we will ask them all to be a no-source for now), and 3) to 

start a list in which we will record whether any artefacts have been dropped on this particular 

patch during a run. The flow of the program is governed by brackets and it is very easy to lose 

track of how many you have opened already. To avoid confusion once you open a bracket, 

immediately close it and write the code inside. The indentation does not matter, but it makes the 

code easier to read so we recommend using it. Hit the ‘Check’ button to see if there are any errors.  

And there are. There always are. The message: ‘Nothing named SOURCE? has been defined.’ 

appeared at the top of the screen. Indeed, we tried to set the variable source? to false without 

defining it first. Congratulations on seeing your first code error!  

Variables are often used to describe the characteristics of agents, patches and the world. For 

example, an agent can have age, gender, energy, cultural marker or any other feature relevant to 

the model. These variables may change throughout the simulation run (e.g., age, energy) or 

remain static (e.g., gender, cultural marker). There are two types of variables in NetLogo’s syntax: 

1) global variables, used throughout the code, which must be listed at the beginning of the code 

or defined using Interface items (we will come back to this), and 2) local variables, defined by 

the let primitive, which are only valid within one procedure. We will see the use of local variables 

later on, but the source? is a global one - it is a characteristic of all the patches. We will set its 

value in the setup procedure and it will remain unchanged throughout the run. The same applies 

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html
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to the assemblage list so we will also define it as a global variable. Type at the beginning of the 

code (before “to setup”):  

patches-own [ source? assemblage ] 

And hit the ‘Check’ button; there should be no errors. If you now 

go to the Interface tab and click on the ‘setup’ button, you will 

see that the screen went white. Right click anywhere within the 

view panel and choose ‘inspect patch ...’ from the drop down 

menu. It will show you (Fig. 4) a list of patch variables, including 

some of the built-in ones such as the x and y coordinates and 

the patch color, but also the two we have defined ourselves: 

source? and assemblage.  

The white screen is not very exciting so let’s set up the patches 

that are raw material sources. Because we do not want ALL the 

patches to be a source we will use the n-of (number of) 

primitive. Each raw material source needs to be unique so we 

will give them a different id. Type inside the setup command, 

after the first command block but before the reset-ticks.  

let r 1 

ask n-of 5000 patches [              

set source? true 

set material_type r 

set r r + 1              

set pcolor black 

  ] 

The first thing we do here is to define a local variable r and set it up as 1. We then ask 5000 

patches 1) to change their source? status to true, 2) to set the material_type as the unique 

id r, 3) to then add 1 to r so that the next patch gets the next (r+1) id, and finally 4) we will 

change their colour to black to see where the raw material source patches are. Hit the ‘Check’ 

button. A familiar error message appears. But this time you know what to do! Add 

material_type in the list of patch variables (patches-own) at the beginning of the code: 

patches-own [ source? assemblage material_type ] 

Move to the Interface tab and hit the ‘setup’ button. You can now inspect one of the source 

patches by right clicking on it and choosing ‘Inspect Patch ...’ from the drop down menu. You will 

see in the pop-up window that the value of  source? is true.   

We have now created the environment, but not the agents. We actually only need one but we 

should give her/him quite a few variables such as the initial location and looks as well as a 

maximum number of lithics s/he can carry and a list to keep track of them. Type after the patches 

setup procedures but before reset-ticks:  

Figure 4 Inspect 
patch window. 

Figure 1.4. Inspect patch window. 
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  crt 1 [ 

    setxy random max-pxcor random max-pycor 

    set color red 

    set size 10 

    set shape "person" 

    set max_carry 100 

    set toolkit [] 

  ] 

crt stands for ‘create agents’, in our case, one agent. Inside the brackets we set their initial 

position to a random patch (i.e., with x and y coordinates between 0 and the current maximum - 

max-pxcor and max-pycor) and add a few variables: color (notice that color applies to agents 

and pcolor to patches), size and shape. We also initiate a list of all the raw material types the 

agent carries in its toolkit and set up how much s/he can carry at any one time. Just like source? 

or assemblage the toolkit list and the max_carry variable are global variables (you can hit 

‘Check’ if you want to see the error message). However, this time they apply to agents not patches 

so we need to make an turtle-specific variables lists. Write the following line at the beginning of 

the code:   

turtles-own [ toolkit max_carry ] 

Here, we finally drop the bombshell - in NetLogo jargon agents are called turtles. This is the 

legacy of being originally developed as an educational tool for kids. It makes for a fun code 

development and all NetLogo developers sooner or later learn to love their turtles.  

If you now go to the Interface tab and hit ‘setup’ you should find a red human-shaped agent on 

one of the patches (Fig. 5). If you keep on pressing the setup button you will see that each time 

the simulation is reset, the agent and source patches are initialised at a different (random) 

location.  
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1.4 The go procedure 

With the setup complete let’s move on to the go procedure, i.e., the main body of the simulation 

which will be repeated until you click on the ‘go’ button again. The first thing we want the agent to 

do is to move around the landscape. We have established that in each time step the agent will 

move to one patch in its Moore neighborhood (that is, to the S, N, E, W or SE, SW, NE, NW of 

the current location) or stay put. You can put it in a more mathematical terms as: the agent has a 

1 in 9 chance of staying where it is or moving to any one of the surrounding patches. In order to 

code the agent’s movement, we start the command with the keyword ask turtles and enclose 

a list of functions, e.g., the move-to primitive in brackets. Type the following inside the go 

procedure: 

to go 

ask turtles [ 

if random 9 > 0 [ move-to one-of neighbors ] 

]  

tick 

end 

Figure 1.5. The initialized simulation. 
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Let’s look at the code a bit closer. We ask all turtles (in our case there is only one) that if a random 

integer (whole number) between 0 and 8 is higher than 0 then the agent should perform the 

functions that are inside the brackets: move-to one-of neighbors. If it’s 0 then nothing 

happens - the agent stays put. move-to, one-of and neighbors are all NetLogo primitives 

and we encourage you to check them in the NetLogo dictionary 

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html). We also added the tick primitive at 

the end of the go procedure that moves the time counter by one. Go to the Interface tab and click 

first on ‘setup’ and then on the ‘go’ button. You should see the red agent running around the world 

like crazy. Use to speed slider at the top of the window to slow it down a bit. You should be able 

to see that the agent moves by one patch as the time counter underneath the speed slider is 

ticking forward. Click on the ‘go’ button to stop the simulation. 

The next thing to do according to the flow diagram of the model (Fig. 1) is for the agent to drop 

one item at each step whenever its toolbox is not empty. We will use an if-loop to check whether 

there is anything to drop in the toolkit and then update both the assemblage of the patch and the 

agent’s toolkit. Write the following code inside the go using another  ‘ask turtles’ command 

(after the final closing bracket of the movement function but before tick):  

ask turtles[ 

   if length toolkit > 0 [ 

let i random length toolkit   

ask patch-here [  

     set assemblage fput (item i [ toolkit ] of myself) 

assemblage 

] 

set toolkit remove-item i toolkit 

   ] 

] 

Let’s go through the code line by line. Like in the previous code snippet we use the ‘if’ conditional 

loop. This time we will only perform the functions enclosed by the first set of square brackets if 

the length of the toolkit list is more than zero, i.e., the toolkit is not empty. If that is the case, we 

choose at random an item with an index i from the toolbox. i is an index number between zero 

and the number of items currently present in the toolkit (length toolkit) which denotes its 

position in the list (as in: first, third, tenth etc.). In the next line we ask the patch on which the 

agent stands (note the special primitive patch-here) to add the item (using the fput list 

primitive) i of the toolkit of the turtle asking, referred to with the primitives of myself, to the 

patch’s list of dropped items -  assemblage. We then remove the same item from the agent’s 

toolkit.  

If you run the simulation and inspect the agent (click on the ‘go’ button to pause the simulation, 

then right click on the agent and choose ‘inspect turtle 0’), you will notice that despite all the coding 

we have just done the agent’s toolkit remains empty. That’s not what we want! But it is easy to 

understand why. We have no code for picking up raw material! In short, the agent never got a 

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html
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chance to pick anything up! This cycle of writing small modular code bits and then checking the 

simulation (by just running it and by inspecting its elements) is the best way of writing code. If you 

try to write everything at once, chances are there will be errors and it will be much harder to find 

them.  

We recognise patches which contain a raw material source by their variable source? set as 

true. Whenever the agent comes across one of them we want it to restock the raw material. We 

will again use an if-loop to check whether the patch is a ‘source patch’ and if so fill up the agent’s 

toolkit until it is full (using the while loop). Type the following code to make a new ask turtles 

command inside the go procedure (after dropping procedure but before tick): 

ask turtles[ 

if [ source? ] of patch-here = true [ 

let raw_material [ material_type ] of patch-here 

while [ length toolkit < max_carry ] [ 

set toolkit fput raw_material toolkit 

]  

] 

] 

In the first line we ascertain that the patch is indeed a source patch. If it is not, the block of code 

enclosed in the square brackets will be ignored and the program will move to the next statement 

(in this case: tick). Do you remember that each raw material source has a unique ID? We need 

that ID so that we know what type of raw material is added to the toolkit. The let statement sets 

up a local variable raw_material to the same value as the ID (material_type) of the patch 

the agent is standing on (patch-here). The variable raw_material is local, meaning it is only 

recognised inside the ask turtles brackets. If you try to use is anywhere else, our favourite 

error message (‘Nothing named raw_material has been defined’) would pop up. In the next line a 

‘while-loop’ adds the raw_material  to the toolkit list until the maximum capacity of the agent 

(max_carry) is reached. Note the difference between the if- and while-loops here. If the given 

condition is fulfilled (e.g., the patch-here is a source or a randomly drawn number is higher than 

zero) an if-loop will perform the actions defined inside its brackets once. A while-loop will keep on 

repeating them until the given condition is reached (e.g., the toolkit length is equal to the maximum 

capacity of the agent).  

Go to the Interface tab and run the simulation. Inspect the turtle - if you keep the inspect window 

open during the run you should be able to see how the toolkit changes every time the agent comes 

across a raw material source patch.  

It is a bit difficult to see the raw material toolkit in the small box, so let’s create a plot that will show 

the changes in the frequencies of different raw material types present in the toolkit. Click on the 

drop-down list next to the ‘Add’ button at the top of the Interface tab and choose ‘Plot’. Click 

anywhere on the white area outside of the view panel. A new pop-up window will appear. Write 

in the ‘Name’ box: ‘Toolkit richness’. The ‘Plot pens’ box is where we specify what should be 



10 

plotted. The default value of plot count turtles counts the number of agents and in many 

cases is very useful but since we only have one agent it does not make much sense. Delete it 

and type:  

plot [ length (remove-duplicates toolkit) ] of turtle 0 

 

 
Figure 1.6. The plot interface.  

This will plot the size (length) of the toolkit list once all duplicates are removed, that is the 

number of unique raw material sources present in the agent’s toolkit. Every turtle has an in-built 

unique number assigned to it when it is created. Since we only have one agent, its number is 

zero. We specify this (of turtle 0) because otherwise the plotting function would not know 

which agent’s toolkit to plot. Run the simulation (slow it down). If you compare your plot with figure 

7 in Brantingham’s paper (2003) you will notice that they strongly resemble each other.  
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Congratulations you have successfully replicated a famous model!  

To finish off, we will slightly extend the neutral model. Brantingham notes that the dynamics of 

the simulation will change if the maximum size of the toolkit that the agent can carry is altered. 

We will set up a slider to help running a series of experiments that will test it. As mentioned before, 

global variables can be defined at the beginning of the code in the variables lists (patches-own, 

turtles-own). However, you can also define them in the Interface tab by using a slider, a 

chooser or a box. Go to the interface and click on the drop-down list next to the ‘Add’ button and 

choose ‘Slider’. Then click anywhere on the white field outside of the view panel. A pop-up window 

will appear. Type max_carry in the ‘Global variable’ box at the very top. You can leave the rest 

of the boxes unchanged and hit OK. You immediately get an error message saying that ‘There is 

already a global variable called MAX_CARRY’.  

 
Figure 1.8. The slider variable interface.  

This is because we have already defined max_carry at the beginning of the code in the 

turtles_own list. Now we have two sources of a variable called max_carry (the slider and 

the turtles-own list) and NetLogo does not know which one to use. Simply delete max_carry 

from the turtles_own list. It should look like this now:  

turtles-own [ toolkit ] 

Figure 1.7. The plots, Brantingham versus our model. 
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Also, go to the setup procedure and delete the line set max_carry 100 in the command used 

to create the agent. If you forget to remove it from the setup procedure what will happen is 

NetLogo will read from the slider the value of max_carry (say 80) and then start executing the 

setup procedure, but when it comes across the line in which you set max_carry 100 it will 

overwrite the value set on the slider (80) to the one in the code (100). This is a common error 

because it does not produce an error message (since you have not done anything illegal 

according to the NetLogo syntax). Hit the ‘Check’ button and there should be no more errors. You 

can now use the slider to vary how much the agent can carry in each run. Although you can use 

the slider during the run, it is discouraged as the results will not be replicable. Instead change the 

value before each run and compare the output of the plot. Have you noticed how the peaks of the 

toolkit richness are lower and less frequent if the max_carry is set to a lower number?  

This is the end of Tutorial 1. In the next one (Davies et al. 2019), we will move our model into a 

real landscape generated from GIS layers. Tutorial 3 (Crabtree et al. 2019) will focus on how to 

better collect the simulation output (just looking at a plot is not the greatest method) and how to 

automate running the experiments (so you don’t spend days moving sliders).  
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; _________________ GLOBAL VARIABLES _________________  

turtles-own [ toolkit ] 

patches-own [ source? assemblage material_type ] 

 

; _________________ TO SETUP _________________  

 

to setup 

  ;;; The setup procedure is run only once at the beginning of each experiment.  

  clear-all   ; remove any residuals of previous experiments 

   

; _________________ 1. Environment Setup _________________  

  ;;; setup patches  

  ask patches[ 

    set pcolor white 

    set source? false  ; initially all cells are set as having no raw material  

    set assemblage []  ; start a list of items that the agent dropped at this location  

  ]    ; (this would be an equivalent to an archaeological 'find spot')  

   

   ;;; setup patches with raw material  

   let r 1 

   ask n-of 5000 patches [ ; 5000 random patches become raw material sources 

      set source? true  ; set the variable source? as true 

      set material_type r ; each will have a different raw material type 

      set r r + 1   ; marked as a number between 1 and 5000 

      set pcolor black 

  ] 

 ; _________________ 2. Agent Setup _________________  

   ;;; create the agent and place him on a random patch, set color, size and shape 

   crt 1 [ 

    setxy random max-pxcor random max-pycor 

    set color red 

    set size 10 

    set shape "person" 

    set toolkit []   ; start a list of items that the agent carries 

 

  ] 

   reset-ticks   ; reset the time counter 

end    ; end of the SETUP procedure 
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; _________________ TO GO _________________  

 

to go 

;;; agent procedure: 1. move to one of 4 neighbouring cells; 2. drop an item from the toolkit if not 

empty 3. reprovision the toolkit if a raw material source patch is encountered 

    

   ask turtles [ 

     ;_________________ 1. Move _________________  

      if random 9 > 0 [   ; if a randomly drawn no between 0 - 9 is higher than 0 

        move-to one-of neighbors ; move to any one of the 8 neighbouring patches 

      ]      ; otherwise (it is 0) don’t do anything 

   ] 

       

     ;_________________ 2. Drop a random item from the toolkit _________________  

   ask turtles [      

      if length toolkit > 0 [  ; if the toolkit is not empty 

        let i random length toolkit ; determine which item (i) will be dropped  

       

        ask patch-here [   ; add item i to the 'assemblage' of the patch  

           set assemblage fput (item i [ toolkit ] of myself) assemblage    

      ] 

 

      set toolkit remove-item i toolkit ; remove the item (i) from the toolkit 

    ] 

  ]    

      ;_________________ 3. Reprovision if on a source patch  _________________   

   ask turtles [ 

      if [ source? ] of patch-here = true [ ; if you come across a patch with raw material 

          let raw_material [ material_type ] of patch-here ; determine the type of raw material  

          while [ length toolkit < max_carry ] [ ; while you still have capacity to carry more... 

            set toolkit fput raw_material toolkit ; keep on adding that raw material to your toolkit 

        ]  

      ] 

    ]  

    

   tick                                      ; time + 1       

    

end      ; end of the GO procedure 

 



 

 

Summary of NetLogo  

This document provides a general overview of NetLogo structure and syntax and can be used as a 

glossary alongside the tutorials (Romanowska et al. 2019; Crabtree et al. 2019; Davies et al. 2019) 

or as a quick ‘cheat-sheet’. 

NetLogo (Wilensky 1999) is a user-friendly simulation platform commonly used for agent-based 

modeling in social and natural sciences. It is based on the Logo language originally designed as an 

educational tool for teaching programming to kids, making it a ‘low threshold, high ceiling’ platform. 

NetLogo combines ease of use and quick development with high level capacity and a wide suite of 

built-in tools such as visualizations, automated scenario running, etc. There are a number of other 

ABM platforms (RePast, Mason, AnyLogic; overview: Abar et al. 2017) and simulations can also be 

built using any of the general use programming languages (Python, C++, Java). NetLogo is by far the 

most dominant ABM platform in Archaeology (Davies and Romanowska 2018) and is very popular in 

social sciences and ecology. However, like every tool, NetLogo has some limitations which we discuss 

at the end of the document.  

 

1.1. Installation 

NetLogo can be downloaded from https://ccl.northwestern.edu/netlogo/. It is available for Windows, 

Mac OS X and Linux. The installation is a simple “point and click” and in most cases is unproblematic. 

In case of any issues it is worth consulting the FAQ of the NetLogo User Manual 

(https://ccl.northwestern.edu/netlogo/requirements.html). 

1.2. Code building blocks 

The four main entities in Netlogo are the agents (‘turtles’), the grid squares (‘patches’), the 

connections between agents (‘links’) and the observer. The observer governs the simulation flow, for 

example, by progressing the time counter or scheduling the order of actions. The building blocks in 

NetLogo consist of commands and reporters. Built-in commands are called ‘primitives,’ user defined 

ones are called ‘procedures’ and ‘reporters’. The latter calculate a value and then report it. Most 

NetLogo simulations are composed of two main procedures: to setup and to go. In the setup 

procedure the world and the agents are initialized and it is executed only once at the beginning of a 

run. Setup may include loading up the GIS raster, creating the initial population of agents and giving 

them a set of characteristics (e.g., sex, age, profession). The go procedure is the core of a model and 

consists of a list of actions (often themselves procedures) that are repeated at each time step of the 

simulation until the stop condition is reached. All procedures come from the observer environment 

and are defined using the to and end keywords. If not specific to the observer commands apply to 

one of NetLogo entities: turtles, patches, or links. Therefore, they are always enclosed between 

square brackets following the keywords: ask turtles/patches/links.  Figure 1 shows the 

common structure of NetLogo code with a list of procedures inside the go and the ‘ask 

turtles/patches’, etc. command inside each of the procedure’s definitions. It is important not to 

have ‘ask turtles’ inside another ‘ask turtles’, e.g., do not use ask turtles [move] if 

there is another ‘ask turtles’ inside the ‘move’ procedure -  it will inevitably give you an error.  

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/requirements.html


 

 

 
  



 

 

1.3. Variables 

There are two types of variables in NetLogo: global and local variables. Global variables are defined 

at the beginning of the code and ascribed to one of the NetLogo entities: the observer (globals []), 

agents (turtles-own[]), grid squares (patches-own[]) or links (links-own[]). In the Interface 

tab, button, slider, and chooser also define global variables. Global variables can be used throughout 

the code and accessed via any procedure. Usually, we use global variables for things that are set at 

the beginning of the run and do not change during it, such as the initial number of agents, or the 

capacity of agents’ backpack.  

In contrast, local variables, defined by the let primitive, can only be accessed from within the 

procedure it has been defined in. For example, the following line of code: 

let old_turtles turtles with [age > 50] 

defines old_turtles as all turtles whose attribute age is greater than 50. We can then ask all ‘old 

turtles’ to do a specific task that is different from the one performed by youngsters. However, in the 

next time step, the list of ‘old turtles’ will change as some of them would have died while others would 

have reached the required age. Thus, local variables are dynamic and changeable throughout the 

run.  

 

1.4. Control statements  

Similar to all programming languages, NetLogo supports three main types of loops: if-loops, while-

loops and for-loops (the latter will be discussed in section 1.4, Lists). If the conditional statement of 

an if-loop evaluates to ‘true’ a list of actions specified in the square brackets is performed. For 

example, the following command:  

ask turtles[ 

if energy <= 0 [die] 

] 

can be read as ‘ask each turtle: if your energy is equal or lower than zero, please die’. In contrast, the 

while loop keeps on repeating the set of actions enclosed by the square brackets until the specified 

condition is reached. For example, this command: 

ask turtles [ 

while energy > 0 [move] 

] 

can be read as ‘ask each turtle to move as long as their energy is greater than zero’. It is important to 

ensure that the while loop can (and will) reach the condition, otherwise the code will be run forever 

(or rather, until your computer’s memory limit is reached - this is known as the ‘stack overflow’). For 

example, this will give the while-loop a closure: 

ask turtles [ 

while energy > 0 [move] 

set energy energy - 1 

]  



 

 

1.5. Lists 

A list is an object that stores multiple pieces of information. Lists are useful for keeping track of groups 

of things where group membership might change over time; for example, a forager’s toolkit. A list can 

be initiated using the set primitive:  

set example_list [10 20 30 40 50]  

Alternatively, an agentset can be used to construct a list through the primitive of, e.g.:  

set turtle_ages [ age ] of turtles 

In this case the list turtle_ages contains the values of the age variable of each turtles.  

Although lists are immutable, new lists can be created on the basis of existing lists, again using the 

set primitive.  

set example_list replace-item 2 example_list 25  

The ‘2’ in the example above represents the index of the list, i.e. the position of the item which is to 

be replaced with the value ‘25’. Similar, to most programming languages the indexing in NetLogo 

starts with zero, i.e., the index of the first element of the list is 0, the second: 1, the third: 2, etc. 

The for-loop mentioned above allows the user to perform an action on each element of the list. If we 

would like to inspect the content of the example_list after it was altered we can use: 

foreach example_list show 

and the result should be (if you executed the previous example): 

10 

25 

30 

40 

50 

 

We can also use foreach in conjunction with the arrow reporter to iterate through a list. For example 

(foreach example_list example_list 

  [ [a b] -> show word "the sum is: " (a + b) ]) 

Which tells NetLogo to use example_list as input and add corresponding integers together (e.g., 

10+10) and report that in the command line. 

The result should be (if you executed the previous example): 

20 

50 

60 

80 

100 

 



 

 

The examples above are intended as a general reference only. We will guide the reader through the 

process of building a simulation in NetLogo and discuss the code elements in a more comprehensive 

manner in the tutorial.  

1.6. NetLogo resources 

There are many freely-available learning resources for ABM and NetLogo on the Internet. NetLogo 

documentation (NetLogo 2018), which includes tutorials, a programming guide and a full dictionary of 

NetLogo primitives is usually the first port of call for any technical inquiries. However, there are many 

other ABM- and NetLogo- dedicated websites, blogs, code repositories and user groups. 

simulatingcomplexity.wordpress.com run by the authors of this tutorial is a specialized blog on 

archaeological applications of computational modeling and complexity science. The Special Interest 

Group in Complex Systems Simulation holds an annual beginner workshop in NetLogo as well as 

sessions and roundtables at the Computer Application and Quantitative Methods in Archaeology - 

CAA conference (https://caa-international.org/), while the European Social Simulation Association - 

ESSA (http://www.essa.eu.org/) organizes a week-long summer school in social simulation as a 

satellite to its annual conference. In addition, the Complex Systems Society annual conference - CSS 

(https://cssociety.org/) usually features at least one session (satellite) dedicated to archaeology. 

There are other, domain specific training courses available.  

There are a number of university-level textbooks which use NetLogo to show the principles of complex 

systems modeling in ecology (Railsback and Grimm 2011), geography (O’Sullivan and Perry 2014), 

social science (Gilbert and Troitzsch 2005; Miller and Page 2007) and economy (Hamill and Gilbert 

2016). 

Not all simulations need to be written from scratch. NetLogo comes with a large and growing library 

of models. With over two hundred agent-based models the Models Library (accessible through the 

user interface of NetLogo) contains many examples, which, although developed for other disciplines 

from mathematics and physics to ecology and transport, could be adapted to archaeological research. 

For instance, epidemiological models simulating the spread of a disease in human populations under 

different conditions share many characteristics with theoretical models of the diffusion of innovations. 

In addition, many authors working on archaeological case studies share their model’s code after 

publication in the OpenABM (https://www.comses.net/) repository and increasingly also on GitHub 

(https://github.com/). 

1.7. When to switch to a different platform 

Given how easy it is to develop agent-based models in NetLogo and how popular it is among social 

scientists and in other disciplines, you may ask yourself: ‘why would anyone use any other software?’ 

Like every tool, NetLogo has its tradeoffs and it is important to know its ‘weaknesses’ in order to 

minimize their impact on one’s research. The three main limitations of NetLogo are: 1. The high level 

of the programming language, 2. The lack of some of the standard software development tools, and 

3. The performance. 

The high level of the programming language is the exact reason why it is not difficult to learn to code 

in NetLogo. You ‘ask turtles’ to ‘forward 1’. It’s easy to write, it’s easy to read, but what exactly does 

it do? The simplicity of coding comes at a price of not having a full control over the code. For example, 

it is all too common to (erroneously) assume that the primitive ‘forward 1’ makes all turtles move to 

the next patch ahead. It looks so obvious that hardly anyone checks the documentation to see whether 

this is actually the case (it is not). But these checks should be done. NetLogo documentation is 

extensive, thorough and openly available. It is important to constantly test the code during 

development to be sure it is doing exactly what one thinks it is doing. Unfortunately, NetLogo lacks 

https://simulatingcomplexity.wordpress.com/
https://caa-international.org/
https://caa-international.org/
http://www.essa.eu.org/
http://www.essa.eu.org/
https://cssociety.org/home
https://cssociety.org/
https://www.comses.net/
https://www.comses.net/
https://github.com/
https://github.com/


 

 

some of the standard software development tools, for example, for testing code. This is a weakness 

that we hope will be soon addressed by its developers, but in the meantime it is crucial that the 

modeler runs a wide variety of tests to minimize the risk of code errors. It is commonly done using the 

‘print’ primitive (e.g., by asking one of the turtles to print out the results of calculations it is performing 

and checking that they are within the expected ranges) or by running ‘special’ scenarios (e.g., with no 

agents or only one agent to check that the algorithms function correctly). Also, the ‘inspect’ and ‘watch’ 

functions as well as the ‘pen-down’ primitive may come very handy in checking the code.  

Finally, the performance issue. NetLogo is not a tool for highly optimized simulations. Also, it has no 

code parallelization capacity or any other support for HPC (High Performance Computing) so even a 

supercomputer may not be able to save you. If you need to run your simulation 300,000 times, 

NetLogo is not going to cut it. This limits, for example, the parameter ranges one can test or the 

number of runs performed to deal with the stochasticity of the model. It is common that the modeler 

finds themself (usually about 6 months before the end of a project) with a model that takes 20 minutes 

to run from start to finish. If they need to run scenarios with 4 parameters, and each one has 10 values 

that need to be tested, plus each run needs to be repeated 10 times because of stochasticity then we 

are talking about three and a half years before the results come in and let’s hope that the code does 

not have a bug and needs to be run again. However, there are tools that can help optimize the code, 

in particular, the profiler (https://simulatingcomplexity.wordpress.com/2015/03/23/netlogo-profiler/) 

On the other hand, it is much easier to implement a working simulation developed in NetLogo in one 

of the fast programming languages, such as Python or Java, than to develop it there from scratch. 

Thus, it is not unusual for archaeologists to start their ABM adventure with NetLogo and then move 

to other programming languages and simulation platforms while still using NetLogo to prototype their 

models. As one of the reviewers of this paper noted: “I would not make the argument that learning 

Netlogo will make you an ABM expert over all platforms. It is a good start though.” We hope that this 

set of tutorials will help you kick start such a journey.  
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