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Abstract 13 

Objective: It was investigated whether providing an explanation for a take-over request in automated 14 

driving influences trust in automation and acceptance. 15 

Background: Take-over requests will be recurring events in conditionally automated driving which 16 

could undermine trust as well as acceptance and, therefore, the successful introduction of automated 17 

vehicles. 18 

Method: Forty participants were equally assigned to either an experimental group provided with an 19 

explanation of the reason for a take-over request or a control group without explanations. In a simulator 20 

drive, both groups experienced three take-over scenarios that varied in the obviousness of their 21 

causation. Participants rated their acceptance before and after the drive and rated their trust before and 22 

after each take-over situation.  23 

Results: All participants rated acceptance on the same high level before and after the drive, 24 

independent of the condition. Control group’s trust ratings remained unchanged by take-over requests 25 

in all situations, but the experimental group showed decreased trust after experiencing a take-over 26 

caused by roadworks. Participants provided with explanation felt stronger that they had understood the 27 

system and the reasons for the take-overs. 28 

Conclusion: A take-over request did not lower trust or acceptance. Providing an explanation for a 29 

take-over request had no impact on trust or acceptance, but increased the perceived understanding of the 30 

system. 31 

Application: The results provide insights into users’ perception of automated vehicles, take-over 32 

situations and a fundament for future interface design for automated vehicles. 33 

Keywords: Technology acceptance, Trust in automation, Human-automation interaction, 34 

Automated driving, Take-over request 35 

Précis: In this study, we investigated the effect of an explanation of the reason for a take-over request 36 

on trust and acceptance of driving automation. An experimental group provided with explanations and 37 

a control group given no explanations experienced three TORs that varied in the obviousness of the 38 

reason for the take-over.  39 
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Introduction 40 

Advances in passive and active safety technologies have led to a remarkable increase in traffic efficiency 41 

and safety (Kühn & Hannawald, 2016). Automated vehicles are currently being introduced to the 42 

consumer market, with the intention to provide an even higher standard (Watzenig & Horn, 2017). 43 

However, societal goals do not necessarily coincide with a driver’s personal goals (Adell, Várhelyi, & 44 

Nilsson, 2014b). Consequently, previous research that accompanied the introduction of Advanced 45 

Driver Assistance Systems (ADAS) has shown that to guarantee a successful introduction of a new 46 

technology it is necessary to evaluate its deployment not only from a technological perspective but also 47 

from a driver-centered perspective (Bengler et al., 2014; Regan, Horberry, & Stevens, 2014). Whereas 48 

excellent system performance may be sufficient from a technical point of view, a system’s functionality 49 

must be known, understood, believed in, and valued by the driver in order for it to be accepted and used 50 

(Adell et al., 2014b; van der Laan, Heino, & de Waard, 1997). An unsystematic introduction without a 51 

driver-centric approach may give rise to issues such as information overload, over-reliance, or negative 52 

behavioral adaptation to the technology (Broughton & Baughan, 2002; Mahr & Müller, 2011; 53 

Parasuraman & Riley, 1997). This can lead to low acceptance or even disuse of the new system after its 54 

introduction despite all the possible benefits (Lee & Seppelt, 2012).  55 

Acceptance represents a multidimensional attitude that results out of the fulfillment of the user’s 56 

individual needs and requirements. It consists of an affective as well as a rational-cognitive (e.g., 57 

perceived usefulness) component and is an antecedent of the intention to buy and to use a system (Adell 58 

et al., 2014b; van der Laan et al., 1997; Schade & Baum, 2007). We define acceptance as an attitude and 59 

follow Adell’s (2009) definition of acceptance as “the degree to which an individual intends to use a 60 

system and, when available, to incorporate the system in his/her driving” (p. 31). Acceptance is closely 61 

related to actual usage of a system because, as described in the Theory of Planned Behavior (Ajzen, 62 

1991), attitudes influence the intention to use a system and, thereby, actual behavior. Based on this 63 

theory, the Technology Acceptance Model (TAM; Venkatesh, Morris, Davis, & Davis, 2003) has 64 

successfully explained the adoption of driver assistance systems or automated vehicles in several studies 65 

(Choi & Ji, 2015; Ghazizadeh, Peng, Lee, & Boyle, 2012; Meschtscherjakov, Wilfinger, Scherndl, & 66 

Tscheligi, 2009).  67 
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The introduction of driving automation will only generate the claimed benefits if the technology is 68 

accepted by the drivers and used appropriately (Najm, Stearns, Howarth, Koopmann, & Hitz, 2006). 69 

Contrary to manual driving, in conditionally automated driving (Level 3 in SAE, 2016), the driver is 70 

removed from the driving task and a driving automation operates the vehicle. The driver merely acts as 71 

a fallback level and has to take over vehicle control at system limits. This concept of vehicle control 72 

represents a novelty for the majority of the driving population, which is why acceptance is not 73 

guaranteed and has to be investigated (Payre, Cestac, & Delhomme, 2014). 74 

Trust as a necessary precondition of acceptance 75 

Given the close relationship between trust in automation and reliance on it (Bailey & Scerbo, 2007; 76 

Körber, Baseler, & Bengler, 2018), it seems reasonable to include trust in an acceptance framework. 77 

Indeed, previous research has shown that trust is a key determinant for the adoption of new technologies 78 

(Gefen, Karahanna, & Straub, 2003), the adoption of automation (Lee & Moray, 1992, 1994; 79 

Parasuraman & Riley, 1997), and the intention to use autonomous vehicles (Choi & Ji, 2015). The 80 

incremental value of investigating trust in studies on acceptance has been successfully shown by several 81 

studies such as on an on-board monitoring system (Ghazizadeh, Peng et al., 2012), on ADAS 82 

(Trübswetter & Bengler, 2013) and on the reliance on and intention to use automated vehicles (Choi 83 

& Ji, 2015). Consequently, trust in automation as a determinant of acceptance of automation has been 84 

included in in Arndt’s model of acceptance of ADAS (2011) and in the Automation Acceptance Model 85 

(AAM) of Ghazizadeh, Lee, and Boyle (2012). In the AAM, trust partially mediates the effect of the 86 

operator’s beliefs and external variables on perceived usefulness and perceived ease of use, but also has 87 

a direct effect on the behavioral intention to use an automation. Hence, trust in automation is a necessary 88 

condition that has to be fulfilled before acceptance may arise. Put simply, “operators tend to use 89 

automation that they trust while rejecting automation that they do not” (Pop, Shrewsbury, & Durso, 90 

2015, p. 1). Therefore, it is necessary to include an assessment of trust in automation in a study on 91 

acceptance of automation.  92 

 93 

 94 
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Increasing trust and acceptance by providing explanations 95 

Operator and automation are not isolated entities but act as a joint system, i.e. as a team (Bengler, 96 

Zimmermann, Bortot, Kienle, & Damböck, 2012). Therefore, a driving automation cannot be considered 97 

in isolation from its users and must be designed following a human-centered approach to perform in 98 

conjunction with the human interacting with it (Billings, 1997; Christofferson & Woods, 2002; Sheridan 99 

& Parasuraman, 2005). In comparison to ADAS, a driving automation represents a more sophisticated 100 

automated system, an increase in autonomy and authority (Parasuraman, Sheridan, & Wickens, 2000). 101 

While a status icon alone may be sufficient for a less complex function such as a lane departure warning 102 

system, it may no longer be sufficient to support effective coordination with more complex machine 103 

agents like a driving automation, which require more coordination (Norman, 1990; Sarter, 2008). 104 

Coordination needs an adequate model of the automation’s intentions and actions. In order to design 105 

automated systems as “cooperative partners rather than as mysterious and obstinate black boxes” 106 

(Christofferson & Woods, 2002, p. 4), they should act neither capriciously nor unobservably (Klein, 107 

Woods, Bradshaw, Hoffman, & Feltovich, 2004; Lee & Seppelt, 2009).  108 

However, feedback alone is not enough; the interactions have to be as comprehensible for the driver 109 

as possible to create a common ground and, thereby, to ensure the construction of a correct mental model 110 

(Clark & Brennan, 1991). Drivers of automated vehicles will not be experts but laypersons who do not 111 

possess complete in-depth knowledge of the automation and must at first build themselves a mental 112 

model of its functioning (Walker, Stanton, & Salmon, 2016). A user generally builds his mental model 113 

based on the information provided by the system or interactions with it (Naujoks & Totzke, 2014). 114 

Hence, to ensure trust in driving automation, it is crucial to provide the driver with obvious and 115 

comprehensible information on its intentions, state, capacity, and upcoming actions to help them to 116 

understand and make it predictable. Otherwise, the increase in autonomy and authority creates an 117 

intransparent black box where users cannot comprehend or retrace the actions (Dzindolet, Peterson, 118 

Pomranky, Pierce, & Beck, 2003; Verberne, Ham, & Midden, 2012).  119 

Automation failures result in a drop of trust in the automated system (Lee & See, 2004), however, as 120 

Lewandowsky, Mundy, and Tan (2000) concluded, this drop represents more than a simple perception 121 

of whether an automation failure occurred since the failure’s impact depends on its predictability rather 122 
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than on its magnitude. A drop in trust in ADAS only follows if problems were omitted in a description 123 

of the system given beforehand (Beggiato & Krems, 2013) or if the failures were inconsistent with the 124 

perceived design of the system or occurred unpredictably (Lees & Lee, 2007). The attitude toward an 125 

automated system is, therefore, not purely based on performance (Lewandowsky et al., 2000). Even if 126 

the system exhibits high performance, a discrepancy between the operator’s expectations and the 127 

system’s behavior, i.e. a large gulf of evaluation (Norman, 2013), can erode trust (Lee & See, 2004). If 128 

operators had prior knowledge of the magnitude of the failure (Riley, 1996) or if the failure was 129 

predictable or if its cause was comprehensible (Dzindolet et al., 2003), a decrease in trust did not occur. 130 

Accordingly, Gold et al. (2015), as well as Hergeth et al. (2015), observed a slight increase in trust after 131 

the experience of a take-over request (TOR) since the automation worked as described beforehand. 132 

Dimensions such a predictability, understanding or transparency have been proposed as a basis for trust 133 

in automation (Hoff & Bashir, 2015; Lee & See, 2004), which has been empirically shown in several 134 

studies (Choi & Ji, 2015; Muir & Moray, 1996; Seong & Bisantz, 2008). For example, Beller, Heesen, 135 

and Vollrath (2013) presented the uncertainty of an automation in an interface which led to better 136 

knowledge of fallibility and, in consequence, to higher trust ratings and increased acceptance. Users 137 

rated an adaptive cruise control system that took over the driving task as more trustworthy and 138 

acceptable when it provided information on this action (Verberne et al., 2012). Forster, Naujoks, and 139 

Neukum (2017) found that the provision of auditory explanations of the automation’s actions led to 140 

higher reported trust.  141 

Besides these aforementioned cognitive aspects, Adell, Várhelyi, and Nilsson (2014a) suggested 142 

investigating the emotional reactions of the driver such as irritation or stress in research on user 143 

acceptance. Beaudry and Pinsonneault (2010) already showed that anxiety is negatively related to the 144 

use of information technology. Individuals tend to search for or create explanations for unpleasant events 145 

afterward if no immediate reason can be deduced from the environment or prior knowledge, referred to 146 

as retrospective control (Thompson, 1981). Since unexpected TORs are rather stressful situations 147 

(Maule & Hockey, 2012), providing an explanation after the TOR might alleviate the negative affective 148 

reaction and promote a feeling of control. Accordingly, Koo et al. (2015) reported that providing 149 

information yielding reasons for the actions of an auto-brake function created the least anxiety, highest 150 
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trust and was preferred by the drivers. Hence, avoiding negative emotions is essential in guaranteeing 151 

user acceptance.  152 

In this study, we explicitly focus on take-over situations. We investigate if providing an explanation 153 

for a take-over request increases system transparency and understanding and, in doing so, also increases 154 

trust in automation as well as acceptance of the automation. We expect that an explanation should avoid 155 

a decrease in trust and acceptance when a take-over situation occurs because it guarantees the 156 

construction of an appropriate mental model by helping to bridge the gulf of evaluation (Norman, 2013), 157 

enabling a driver to learn when a take-over situation is to be expected and how to react appropriately 158 

(Larsson, Kircher, & Andersson Hultgren, 2014). The created predictability and comprehension of the 159 

situation should mitigate the negative impact of a TOR on trust (Riley, 1996). An explanation also helps 160 

to avoid automation surprises (Sarter, Woods, & Billings, 1997) and negative emotional reactions, 161 

caused by unexpected situations, which are known to reduce acceptance.  162 

Depending on the situation, providing information can, however, also be counterproductive. Whereas 163 

an explanation beforehand is often not possible due to technological limits (e.g., sensor range; Gold & 164 

Bengler, 2014), a presentation simultaneous with the TOR might overload information processing 165 

capacity and may result in a delayed reaction (Walch, Lange, Baumann, & Weber, 2015; Wickens, 166 

2002). Besides a possible objective detrimental effect, subjective ratings of real-time feedback appear 167 

to be more negative as well. Koo et al. (2015) reported that the participants felt subjectively overstrained 168 

if too much information was presented during the automatic brake maneuver. Similarly, Roberts, 169 

Ghazizadeh, and Lee (2012) compared the acceptance of real-time with post-drive driving performance 170 

feedback. Drivers rated real-time feedback as more obtrusive, less useful and less easy to use. To provide 171 

the explanation without a loss in performance and appraisal but still linked to the situation at hand, we 172 

suggest presenting the explanation directly after regaining vehicle control and stabilizing the vehicle, 173 

i.e. after the situation was solved and when workload is at a sufficiently low level. To increase the 174 

generalizability of the results, we investigate the provision of explanations in situations with varying 175 

obviousness. 176 

 177 
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Pre-study 178 

We conducted an online pre-study to evaluate if the chosen take-over situations were comprehensible 179 

and whether they differ in their obviousness of the reason for the take-over. In this survey, a total of 36 180 

participants, 20 (55 %) male, 16 (45 %) female, between the ages of 18 and 51 (M = 25.60, SD = 6.30), 181 

watched videos of three different take-over scenarios (duration between 14 and 29 seconds, filmed in 182 

ego-perspective). The three scenarios, which we expected to vary in their obviousness, have been (a) 183 

GPS data missing (GPS; low obviousness), (b) Missing lane markings (Missing lines; medium 184 

obviousness), and (c) Roadworks (high obviousness). The videos were presented in a resolution of 185 

680 × 400 pixels. The TOR signal was a sharp sinusoidal tone (3000 Hz) and a blinking hands-on icon 186 

(Appendix D) and was presented nine seconds prior to a theoretical take-over. After every video 187 

participants answered the following three questions on a five-point rating scale from not at all (1) to 188 

very much (5): 189 

 “I think this TOR was a system failure.” 190 

 “It is obvious to me, why the TOR was triggered.” 191 

 “I would have wished for an explanation, why this TOR was triggered.” 192 

Figure 1: Reported answers on the videos by question and TOR. 193 

The results, illustrated in Figure 1, show that the scenarios tend to differ for all three questions. In 194 

addition, the participants could elaborate as to why they thought the TOR was triggered. No participant 195 
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could name the correct reason for the system limit for GPS, 35 % answered correctly for Missing lines, 196 

and 78 % could name the correct reason in Roadworks. The results of this pre-study are described in 197 

further detail in Prasch and Tretter (2016). 198 

Main Study 199 

Experimental Design and Scenarios 200 

In the main study, we used a 2 × 3 mixed design. The factor Explanation (between-subjects) consisted 201 

of a control (Control) and an experimental group (Explanation). We assigned the participants equally 202 

and randomly to both groups. The Explanation group was provided with an explanation of the reason 203 

for the TOR after each take-over situation. This explanation was absent in the control group. The 204 

explanations conveyed the external reasons for the TOR as well as the internal implications for the 205 

system (Koo et al., 2015; Lombrozo, 2006). Every explanation had the same structure and wording with 206 

the only difference being the respective cause and effect: „The take-over request was triggered because 207 

of [cause]. Due to [effect], driving in highly automated mode can temporarily not be continued.” They 208 

were recorded by a female voice actor in a natural manner and friendly tone as recommended by 209 

Broadbent, Stafford, and MacDonald (2009). The explanations were presented on the mock-up speaker 210 

system at 68 dB 14 seconds after the presentation of the TOR. At the same time as the audio, a flashing 211 

icon was displayed in the head-up display (HUD) indicating the presence of an explanation. The 212 

participants of both groups carried out a non-driving-related task (NDRT), the Surrogate Reference Task 213 

(ISO 14198:2012, 2012), while driving in conditional automated mode (Level 3; SAE International, 214 

2016). The factor Scenario (within-subjects) represented three take-over scenarios that each participant 215 

experienced in the course of the experimental drive (Figure 2 to 4): (a) GPS, (b) Missing lines, and (c) 216 

Roadworks. The scenarios were chosen to correspond to realistic take-over situations in automated 217 

driving (Aeberhard et al., 2015) and varied in their obviousness of the reason of the take-over – as tested 218 

in the pre-study. The scenario GPS represented a TOR caused by missing GPS data. Conditionally 219 

highly automated driving requires highly precise map data that is not available for every section of 220 

highways yet (Aeberhard et al., 2015). If this data is missing for the current section of the road, a TOR 221 

is emitted. In this scenario, no visible cue for the reason of the take-over was present. The scenario 222 
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Missing lines represented a highway section where the right lane markings were missing (Figure 3). 223 

Without lane markings, it is impossible for the vehicle to detect its exact position on the lane and a TOR 224 

has to be emitted. This scenario contained a visible cue for the reason of the take over in form of the 225 

missing lane markings. The scenario Roadworks (Figure 4) represented roadworks on the participant's 226 

lane, which required bypassing on an alternative lane. In such an unpredictable situation and without 227 

map data, conditionally automated driving becomes unavailable and a TOR is emitted. In this scenario, 228 

the reason for the TOR (roadworks) was directly visible to the driver. Every scenario was exactly 1000 229 

meters (30 s at a speed of 120 km/h) long and started with a TOR nine seconds before the irregularity 230 

in the environment/the cue for the reason of the TOR (disappearing lane markings or yellow, swerving 231 

lanes in the roadworks scenario) appeared. This time budget corresponds to the time taken for a non-232 

critical take-over process for the great majority of participants (Eriksson & Stanton, 2017). It was 233 

thereby ensured that all situations were experienced as non-critical to avoid a confounding influence of 234 

criticality. No other traffic was present during the TOR. After every scenario, the automation became 235 

available again, which was indicated by an icon in the instrument cluster. The order of the scenarios was 236 

permutated using a Latin square. In each situation, the NDRT was presented three times for 60 seconds, 237 

while the first presentation was interrupted by the TOR. In addition, to reduce the predictability of the 238 

TOR, the driving time prior to the TOR (ranging from 2.50 to 7.50 minutes) was manipulated by 239 

implementing up to two NDRT phases (Figure 5), also permutated according to Latin square.  240 

Figure 2: Schematic visualization of 
Scenario GPS. 

Figure 3: Schematic visualization of 
Scenario Missing lines. 

Figure 4: Schematic visualization 
of Scenario Roadworks. 
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 241 

Hence, a participant encountered three situations that each included one of the scenarios (GPS, Missing 242 

lines, Roadworks) with the time between the scenarios being either short/medium/long. Trust was 243 

measured before and after each of the three TORs. The design and procedure of this study was critically 244 

evaluated by the institute’s interdisciplinary internal ethical review entity.  245 

Instructions and experimental track 246 

The experiment was carried out in a driving simulator on a two-lane freeway. Prior to the experimental 247 

drive, the participants received a written introduction to the automation which explained the 248 

functionality of the automation and its interface (e.g., icons). The participants were instructed that the 249 

automation is capable of executing lateral as well as longitudinal control without the need to monitor it. 250 

The automation can not solve every situation and the driver is requested to take-over vehicle control 251 

within a sufficient time budget in this case. The participants then performed an approximately five-252 

minute familiarization drive. In this drive, they were prompted to steer and to brake manually, to turn 253 

on the automation and to observe the automation carrying out vehicle control. They also engaged in the 254 

Figure 5: Procedure of the experiment. 
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NDRT and experienced a single TOR. The drive came to an end when the participants indicated that 255 

they felt comfortable using the driving simulator. The following experimental drive was a single drive 256 

of approximately 30 minutes and contained three TORs in the aforementioned scenarios. Following 257 

previous studies (Gold, Körber, Lechner, & Bengler, 2016; Körber, Gold, Lechner, & Bengler, 2016), 258 

each TOR was represented by a blinking hands-on icon in the HUD and a sharp double earcon (3000 Hz 259 

at 74 dB) via the mockup speaker system with a time budget of nine seconds.  260 

Sample 261 

A total of n = 40 participants, 20 (50 %) female and 20 (50 %) male, took part in the study. The 262 

participants were between the ages of 21 and 30 (M = 25.20 years, SD = 2.60). All of them were students 263 

or employees at the Technical University of Munich. Possession of a valid driver’s license was required 264 

for participation (mean duration of possession M = 7.40 years, SD = 2.30). Participants completed an 265 

informed consent form and acknowledged their voluntary participation and consent with a signature. 266 

Twenty-four (60 %) participants had already taken part in at least one driving simulator study. Annual 267 

mileage and acquaintance with automated driving are shown in Table 1. No participant reported an 268 

impairment relevant for driving. Participation was rewarded with candies. The three participants with 269 

the best performance in the NDRT were rewarded with vouchers for an online store worth 20, 30 and 270 

50 Euros.  271 

Apparatus and Measures 272 

Driving Simulator and Driving automation 273 

The study was conducted in a static driving simulator equipped with a BMW 6-Series mock-up. Seven 274 

projectors provided a front view of approximately 180 °, side and rear mirrors, and a mockup of a HUD. 275 

The implemented driving automation performed on SAE Level 3, conditional automation (SAE 276 

International, 2016). The participants were asked to attend to the NDRT whenever it was present. The 277 

 Annual mileage in kilometers Acquaintance with automated driving 
 

< 5,000 
5,001– 
20,000 

20,001–
50,000 

> 50,001 Median 

Control 10 7 2 1 3 
Explanation 8 7 5 0 2 
Total 18 14 7 1 2.5 

 
Table 1: Participant’s annual mileage and reported acquaintance with automated driving 

(on a rating scale from 1 (lowest) to 5 (highest)). 
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automation could be toggled via a button on the steering wheel and was also shut off by steering or 278 

braking input. The participants were instructed to switch on the automation whenever it was available. 279 

Its status was displayed via an icon in the top center of the instrument cluster. 280 

Non-driving-related Task (NDRT) 281 

While driving, participants had to perform an NDRT, the Surrogate Reference Task (SuRT; ISO 14198, 282 

2012), which is a visual-manual-demanding task that simulates real life situations in which drivers are 283 

strongly engaged in an NDRT during conditional automated driving. In this task, the participants were 284 

presented a scatter of 50 white circles (diameter 40 px) in 18 columns and 15 rows on a black 285 

background. A single, larger circle (diameter 47 px) randomly implemented in this scatter represented 286 

the target stimulus. The participants’ task was to find that larger circle and to highlight the respective 287 

column out of a total of six selectable columns. The task was presented for 60 seconds every 2.50 288 

minutes on a 14 ” Lenovo ThinkVision monitor at a resolution of 1366 × 768 pixels mounted on the 289 

center console and operated via an external numeric keypad next to the gear lever. To increase their 290 

motivation, participants were informed that their performance was being tracked and the best three 291 

participants would be rewarded with vouchers. 292 

Acceptance Questionnaire 293 

Following previous studies on the acceptance of ADAS (Adell, Várhelyi, & Hjälmdahl, 2008; Törnros, 294 

Nilsson, Östlund, & Kircher, 2002), we measured acceptance of the driving automation using a 295 

questionnaire by van der Laan et al. (1997). It represents a semantic differential consisting of two scales, 296 

usefulness and satisfaction, each containing nine bipolar items (e.g., useful–useless) that are rated on 297 

five-point rating scales from −2 to 2. The questionnaire was presented before and after the experimental 298 

drive via GoogleForms. 299 

Trust Questionnaire 300 

Trust in automation was measured with a single item, which has been shown as valid in previous studies 301 

(Beller et al., 2013; Brown & Galster, 2004; Hergeth, Lorenz, Vilimek, & Krems, 2016). The 302 

participants were prompted via an intercom system to rate their trust on a scale from 0 to 100 ("On a 303 
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scale from 0 to 100, how much do you trust the system?") after each engagement in the NDRT. We 304 

analyzed only the trust ratings reported directly before and after each take-over.  305 

Understanding of the Take-Over Request 306 

To assess if the explanation of the TOR had an effect on the predictability and understanding of the 307 

automation, we presented four statements, which could be answered on a rating scale. Participants could 308 

rate how much they felt safe during the take-over, how much they felt that they understood the system, 309 

and how much they would like to know more about the system. 310 

Procedure 311 

After they had been welcomed by the experimenter, the participants received the instructions and filled 312 

out a questionnaire on demographic data. Next, participants started the familiarization drive and 313 

practiced the NDRT. Afterward, the participants filled out the Van Der Laan questionnaire for the first 314 

of two times. Subsequently, the experimental drive started. Upon completion, the same questionnaire 315 

was filled out for the second time and the participants were interviewed with regards to their experience 316 

of the scenarios. At the end, the participants were debriefed and the reward for participation was given. 317 

Data Analysis 318 

We relied on Bayesian parameter estimation to quantify the uncertainty in the parameter estimates and 319 

to obtain a full probability distribution on the resulting credible interval (Kruschke, 2015). For 320 

hypothesis testing, we relied on Bayes Factors (BF; Rouder, Speckman, Sun, Morey, & Iverson, 2009), 321 

which represent the ratio of the probability of the data given a null model to the probability of the data 322 

given an alternative model and thus quantifies whether the data are more compatible with a null model 323 

or an alternative (Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2015). A BF, therefore, directly 324 

quantifies evidence as a likelihood ratio and also, contrary to a p value, is able to obtain evidence for a 325 

null hypothesis as it can distinguish between uninformative results and results supporting the null 326 

hypothesis (Dienes, 2014). A BF10 of 3, for example, states that the data is 3 times more likely in the 327 

alternative model than in the null model. If it equals 1, both models predict the data equally well or the 328 

data are uninformative for a decision. Lee and Wagenmakers (2013) interpret a BF10 1–3 as anecdotal 329 

evidence, 3–10 as moderate evidence and > 10 as strong evidence. The data analysis was carried out by 330 
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the BayesFactor package (Morey & Rouder, 2015) and scripts by Kruschke (2015) implemented in the 331 

statistical computer software R (R Core Team, 2016) and JAGS (Plummer, 2003). A Cauchy 332 

distribution with r = 1 √2⁄  was chosen as the prior distribution for the effect size δ of the alternative 333 

model in the Bayesian t test. This weakly informative prior was chosen as a trade-off between results 334 

that are completely determined by data and the expectation of a small to medium effect size and 335 

represents an anchor point in psychological research (Schönbrodt et al., 2015). With this prior, a p value 336 

of p = 0.05 in an independent samples t test with t(40) = 2.021 corresponds to a BF10 = 1.49. We 337 

estimated the descriptive parameters with a normal prior and uninformative priors for its parameters 338 

(µ ~ N(̅1 ,ݔ/(100∙σ²); σ ~ U(σ/1000, σ∙100)).  339 

Results 340 

Acceptance 341 

We compared both scales of the questionnaire between the experimental group (with explanations) and 342 

the control group (without explanations) as well as within each group before and after the experimental 343 

drive. The descriptive statistics for the scale satisfaction are reported in Tables 2 and 3. With regards to 344 

the reports of satisfaction, we found no difference between the groups before (BF10 = 0.36) and after the 345 

experimental drive (BF10 = 0.42). There was also moderate evidence that the ratings did not change 346 

within the control group before and after the experiment (BF10 = 0.23). Data were inconclusive whether 347 

a slight decrease in the Explanation group occurred (BF10 = 0.74). The results are visualized in Figure 348 

6. 349 
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 350 

 
Group N M SD 

HDI 
 d BF10

LL UL 

Satisfaction Pre-Exp 
Control 20 1.16 0.49 0.93 1.38 0.62

0.05 [−0.58, 0.70] 0.36
Explanation 19 1.21 0.49 0.98 1.44 0.68

Satisfaction Post-Exp 
Control 20 1.17 0.73 0.84 1.50 0.88

0.18 [−0.44, 0.85] 0.42
Explanation 20 1.08 0.67 0.78 1.38 0.83

Table 2: Sample description of the scores on the scale satisfaction; HDI = 95 % highest density interval; LL = 351 
lower limit; UL = upper limit; d = Cohen’s d. 352 

Group d BF10

Control −0.02 [−0.43, 0.38] 0.23
Explanation 0.33 [−0.10, 0.78] 0.74

Table 3: Difference pre–post take-over situation on the scale satisfaction; HDI = 95 % highest density interval; 353 
LL = lower limit; UL = upper limit; d = Cohen’s d. 354 

To investigate the interaction between the conditions and the time of measurement we conducted an 355 

ANOVA conceptualized as a hierarchical linear mixed model in which the levels are clustered within 356 

each factor, following the approach of Rouder, Morey, Verhagen, Swagman, and Wagenmakers (2016). 357 

Here, the effect of group and point of measurement are expressed in the effect size di where each factor 358 

gets a shared prior for its levels. Consistent to the prior the prior width for the expected range of effect 359 

sizes was set to r = 0.5 (medium), which correspondents to the prior width of r = 1 √2⁄  for the Bayesian 360 

t test (Wagenmakers et al., 2017). Participant was included as a random factor. An ANOVA showed no 361 

interaction effect between group and point of measurement (BF10 = 0.08; Table 4).  362 

Figure 6: Difference before and after the 
experimental drive on the scale satisfaction by 
group; error bars = 95 % HDI. 

Figure 7: Difference before and after the 
experimental drive on the scale usefulness by group; 
error bars = 95 % HDI. 
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Model BF10 
Group 0.44 
Point of Measurement 0.33 
Group + Point of Measurement 0.15 
Group + Point of Measurement + Group × Point of Measurement 0.08 

Table 4: ANOVA for the scores of the scale satisfaction with the factors group and point of measurement; BF 363 
indicates comparison to a null model without any factors. 364 

The data on the ratings of usefulness showed no difference between the groups before (BF10 = 0.39) and 365 

after the experiment (BF10 = 0.59) and also no change within a group (BF10 Control = 0.25, 366 

BF10 Explanation = 0.45; Tables 5 and 6; Figure 7). An ANOVA indicated no interaction effect between 367 

group and point of measurement (BF10 = 0.11; Table 7).  368 

 
Group N M SD 

HDI 
 d BF10

LL UL 

Usefulness 

Pre-Exp 

Control 20 0.99 0.60 0.80 1.20 0.69 
0.14 [−0.49, 0.80] 0.39

Explanation 19 0.95 0.44 0.67 1.23 0.84 

Usefulness 

Post-Exp 

Control 20 1.01 0.46 0.81 1.21 0.34 
0.32 [−0.31, 1.03] 0.59

Explanation 20 0.82 0.43 0.63 1.01 0.61 
Table 5: Sample description of the scores on the scale usefulness; HDI = 95 % highest density interval; LL = 369 
lower limit; UL = upper limit; d = Cohen’s d. 370 
 371 

Group d BF10

Control −0.07 [−0.48, 0.34] 0.25
Explanation 0.24 [−0.18, 0.68] 0.45

Table 6: Difference pre–post take-over situation on the scale usefulness; HDI = 95 % highest density interval; 372 
LL = lower limit; UL = upper limit; d = Cohen’s d. 373 

 374 
 375 
 376 
 377 
 378 
 379 
 380 

Table 7: ANOVA for the scores of the scale usefulness with the factors group and point of measurement; BF 381 
indicates comparison to a null model without any factors. 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

Model BF10 
Group 0.59 
Point of Measurement 0.33 
Group + Point of Measurement 0.19 
Group + Point of Measurement + Group × Point of Measurement 0.11 
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Trust Ratings 390 

The participants reported their subjective trust on one item with a rating scale from 0 to 100 before (Pre) 391 

and after (Post) the experience of a scenario. The results are visualized in Figure 8. 392 

 393 

Scenario a) GPS  394 

We found no difference between the groups before (BF10 = 0.31) and after the experimental drive 395 

(BF10 = 0.33; Table 8) as well as no change within the groups (BF10 Control = 0.25, BF10 Explanation = 0.37; 396 

Table 9). 397 

 Group N M SD 
HDI 

d BF10

LL UL 

Pre-Scenario 
Control 20 91.08 9.71 86.80 95.41

−0.02 [−0.57, 0.53] 0.31
Explanation 20 91.29 10.43 86.70 96.14

Post-Scenario 
Control 20 90.59 9.03 86.52 94.64

0.11 [−0.43, 0.67] 0.33
Explanation 20 89.28 11.35 84.06 94.26

Table 8: Sample description of the trust scores in the scenario GPS; HDI = 95 % highest density interval; LL = 398 
lower limit; UL = upper limit; d = Cohen’s d. 399 

 400 

Group d BF10

Control 0.07 [−0.33, 0.48] 0.25
Explanation 0.20 [−0.21, 0.62] 0.37

Table 9: Difference pre–post take-over situation in the scenario GPS; HDI = 95 % highest density interval; LL = 401 
lower limit; UL = upper limit; d = Cohen’s d. 402 

Figure 8: Differences in trust scores before and after the scenarios by group and by scenario; error bars = 95 % 
HDI. 
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Scenario b) Missing Lines 403 

The data also showed no difference between groups before (BF10 = 0.32) and after (BF10 = 0.31) the 404 

experimental drive (Table 10) as well as no change within the groups (BF10 Control = 0.28, 405 

BF10 Explanation = 0.24; Table 11). 406 

 
Group N M SD 

HDI 
d BF10

LL UL 

Pre-Scenario 
Control 20 90.60 10.29 86.06 95.19 −0.06 [−0.61, 

0.49] 
0.32

Explanation 20 91.32 10.05 86.85 95.88 

Post-Scenario 
Control 20 91.10 8.10 87.47 94.68 −0.05 [−0.61, 

0.49] 
0.31

Explanation 20 91.65 9.34 87.56 95.94 
Table 10: Sample description of the trust scores; HDI = 95 % highest density interval; LL = lower limit; UL = 407 
upper limit; d = Cohen’s d. 408 

Group d BF10

Control −0.13 [−0.54, 0.28] 0.28
Explanation −0.04 [−0.44, 0.37] 0.24

Table 11: Difference pre–post take-over situation in the scenario Missing lines; HDI = 95 % highest density 409 
interval; LL = lower limit; UL = upper limit; d = Cohen’s d. 410 

Scenario c) Roadworks 411 

We found no difference between the groups before (BF10 = 0.36) and after the scenario (BF10 = 0.46) as 412 

well as no change within the control group (BF10 = 0.23; Table 12 and 13). However, we found 413 

substantial evidence for a decrease in trust within the Explanation group of ∆ = 5.54 score points 414 

(5.98 %; d = 0.60 [0.13, 1.08]; Table 13). 415 

 

Group N M SD 
HDI 

d BF10 
LL UL 

Pre-Scenario 
Control 20 90.65 10.54 85.85 95.36 

−0.15 [−0.72, 0.39] 0.36 
Explanation 20 92.70 12.15 87.26 98.18 

Post-Scenario 
Control 20 90.58 10.76 85.81 95.42 

0.26 [−0.30, 0.83] 0.46 
Explanation 20 87.16 11.95 81.65 92.46 

Table 12: Sample description of the trust scores; HDI = 95 % highest density interval; LL = lower limit; UL = 416 
upper limit; d = Cohen’s d. 417 

 418 
 419 

 420 

Table 13: Difference pre–post take-over situation in the scenario Roadworks; HDI = 95 % highest density 421 
interval; LL = lower limit; UL = upper limit; d = Cohen’s d. 422 

Group d BF10

Control 0.01 [−0.40, 0.41] 0.23
Explanation 0.60 [0.13, 1.08] 6.56



– Pre-Print – 

20 
 

We carried out an ANOVA to evaluate the evidence for an interaction effect. Data yielded no interaction 423 

effect in the scenarios GPS (BF10 = 0.06) and Missing lines (BF10 = 0.04), but moderate support for an 424 

interaction of Group and Point of Measurement in Roadworks (BF10 = 2.64); this is consistent to the 425 

analysis in Table 13. Table 14 lists the results. 426 

Model 
GPS 

Missing 
Lines 

Roadworks 

BF10 BF10 BF10 

Group 0.44 0.46 0.45 

Point of Measurement 0.38 0.25 2.01 

Group + Point of Measurement 0.17 0.12 0.95 

Group + Point of Measurement + Group × Point of 
Measurement 

0.06 0.04 2.64 

Table 14: ANOVA with the factors group and point of measurement; BF indicates comparison to a null model 427 
without any factors. 428 

Independent of the scenario, we investigated if the trust level changed in the course of the experiment. 429 

The data points in Figure 9 represent the mean of the pre and post situation trust rating. We found 430 

moderate evidence for an increase in course of the experiment (BF10 = 3.89) and moderate evidence that 431 

this effect was independent of group (BF10 Interaction = 0.46; Table 15).  432 

Figure 9: Development of the trust score in course of the experiment by group; error bars = 95 % HDI. 433 
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Model BF10 
Group 0.40 
Point of Measurement 3.89 
Group + Point of Measurement 1.62 
Group + Point of Measurement + Group × Point of Measurement 0.46 

Table 15: ANOVA with the factors group and point of measurement; BF indicates comparison to a null model 435 
without any factors. 436 

In an explanatory analysis, we compared the difference in the trust ratings between the rating before and 437 

after the TOR for participants who experienced Roadworks as their first, second, or third situation. While 438 

there was no difference in the trust ratings if the participants experienced Roadworks as their first 439 

situation (M∆ = 2.17, BF10 = 0.42), the difference was already larger if it was the second situation 440 

(M∆ = 3.57, BF10 = 1.50), and large if it was their last situation (M∆ = 10.29, BF10 = 4.50, d = 1.24). 441 

This trend was not observable in the control group (BF10 Situation 1 = 0.60, BF10 Situation 2 = 0.71, 442 

BF10 Situation 3 = 1.41). However, the sample sizes (n = 7) for these calculations are too small to conduct 443 

reliable and valid inferential statistical methods. 444 

Understanding of the Take-Over Request 445 

After the experiment, we asked the participants to rate four statements on their experience with the take-446 

over situations. We used an ordinal probit model for parameter estimation, which assumes an underlying 447 

normal distributed metric variable that is mapped to the empiric ordinal values via response thresholds 448 

(Liddell & Kruschke, 2015). There was no evidence for a difference in the ratings of questions 1 and 4. 449 

However, the participants in the Explanation group felt stronger that it was clear why they had to take 450 

over (BF10 = 149.10) and that they had understood the system (BF10 = 14.71; Table 16).  451 

  452 
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Control Explanation 

∆M BF10 
Md M (SD) Md M (SD) 

"During the take-over I 
always felt safe." 

4 3.81 (0.63) 3 3.26 (1.44) −0.55 [−1.65, 0.47] 0.93 

"It was always clear to 
me why I had to take 
over." 

3 2.00 (0.97) 4 3.80 (3.28) 1.80 [−0.07, 4.31] 149.10 

"I feel that I have 
understood the 
system." 

3 2.41 (0.67) 4 3.16 (1.37) 0.76 [−0.25, 2.07] 14.71 

"I would like to know 
more about the system 
limits." 

4 3.85 (0.99) 3 3.45 (1.58) −0.41 [−1.64, 0.82] 0.26 

Table 16: Descriptive results of the four questions after the experimental drive; Md = Median; Mo = Mode; 453 
N = 20. 454 

 455 

Discussion 456 

In this study, we investigated the effect of providing an explanation of the reason for a take-over request 457 

(TOR) on trust and acceptance of driving automation. An experimental group provided with an 458 

explanation of the reason for an occurred TOR and a control group given no explanations experienced 459 

three take-over situations that varied in the obviousness of the reason for the take-over.  460 

Both groups indicated in the questionnaire prior to the experimental drive that they were satisfied 461 

with the system and found it useful. This appraisal did not change by experiencing the three take-over 462 

situations. Consistent with previous findings (Gold et al., 2015), it seems that participants do not view 463 

a TOR, as implemented in this study, as a threatening malfunction but rather as a legitimate warning of 464 

a system that is working correctly. In general, trust ratings increased slightly from experiencing the first 465 

take-over to experiencing the last take-over, independent of the condition. This increase in trust with 466 

increasing system experience and no experience of negatively evaluated events has been also been 467 

reported in similar studies (Beggiato, Pereira, Petzoldt, & Krems, 2015; Hergeth et al., 2016). 468 

Accordingly, a take-over situation did not influence the trust rating and we found no difference between 469 

both groups in the scenarios GPS and Missing lines. However, we found persuading evidence for a 470 

decrease in trust in the explanation group in the Roadworks scenario. An imaginable reason for this 471 

might be that the explanations led to a different evaluation of the automation’s competence. The 472 

provided explanations might have conveyed the image of a more complex and competent system in 473 
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contrast to the system in the control group which merely experienced performed lateral and longitudinal 474 

control. Therefore, it may be surprising for the participants of the explanation group that Roadworks, 475 

the most obvious reason for the TOR, could not be solved by the driving automation. A similar finding 476 

was observed by Madhavan, Wiegmann, and Lacson (2006) who observed that automation errors in 477 

easy trials led to greater mistrust than errors in difficult trials. Even small errors of an automated system 478 

affect trust more than a large error if the error was unexpected (Muir & Moray, 1996) and trust erodes 479 

if the system does not behave as expected even if it shows high performance (Lee & See, 2004). Since 480 

the assessment of the automation’s competence requires some experience with the system and some 481 

exposure to the explanations, the effect should be the most pronounced in the last situation. Following 482 

this line of thought, we compared the how much the trust ratings changed by experiencing the TOR for 483 

participants who experienced Roadworks as either their first, second, or third situation in an explanatory, 484 

descriptive analysis. There was no change in the trust ratings if the participants experienced Roadworks 485 

as their first situation, but a large decrease occurred if it was their third situation. We did not observe 486 

this trend in the control group. Each of the three scenarios was implemented with a non-critical take-487 

over time budget of nine seconds. While the road continued as a straight lane after the TOR in the 488 

scenarios GPS and Missing lines, Roadworks was the only scenario that required steering after the nine 489 

seconds to follow the alternative lane on the construction site (see Figure 4). Therefore, a miscalibration 490 

of trust might weight stronger than in the other scenarios and this might be the reason why a TOR might 491 

have a different influence on trust in this scenario.  492 

Nevertheless, all scenarios were easily solvable. The participants might therefore not have seen the 493 

explanations as overly helpful since no problem occurred that may be explained to ease the mind. The 494 

lack of consequences and real risk in simulator drive might have alleviated the need for explanations as 495 

well. That being said, the explanations could have a stronger effect if the situations are more critical or 496 

more confusing. Lastly, the interaction with the automation was very short and limited to longitudinal 497 

and lateral control. Drivers might be more in need of transparency and explanation in more complex 498 

situations such as an overtaking maneuver, crossroads, or entering a highway. The results also have to 499 

be interpreted in light of the fact that both acceptance and trust, were on a very high level right from the 500 

beginning although the automation’s functioning and limitations have been explained in a neutral and 501 
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accurate way prior to the experiment. A possible reason for this fact may be that the study was conducted 502 

at a technical university with the majority of the participants being students. The affinity for and trust in 503 

technology may generally be on a very high level in such a sample. We, therefore, recommend repeating 504 

the study with a sample that has a lower affinity for technology and less experience with automated 505 

driving.  506 

In their rating of their understanding of the TOR, the explanation group felt stronger than the control 507 

group that they had understood the system and that the reason for the take-over was clear to them. Hence, 508 

albeit the explanations had no systematic effect on trust and acceptance, the increase in transparency by 509 

the explanations seems to have been successful. Future studies should explicitly investigate whether this 510 

subjective increase indeed reflects an improvement in the constructed mental model. For example, 511 

drivers should then be able to predict a TOR in a novel situation with higher accuracy. Furthermore, 512 

behavioral measures such as take-over time or gaze behavior may also function as a behavioral indicator 513 

of system understanding since reaction times to expected events are lower (Larsson et al., 2014; Martens, 514 

2004).  515 

Limitations and future work 516 

The study was conducted in a driving simulator to ensure that each participant experienced exactly the 517 

same scenarios. It is possible that the participants may have reported differently due to the lack of risk 518 

in a simulator, especially regarding their perceived safety during the take-over situations. Hence, 519 

providing an explanation could have a greater effect in a naturalistic drive. That being said, Eriksson 520 

and Stanton (2017) have shown that participants’ behavior and subjective ratings did not substantially 521 

differ between an naturalistic automated on-road drive and a high fidelity simulator. We recruited a 522 

gender-balanced sample, but at the same time, mostly students from a technical university aged between 523 

21 and 30 years took part. This led to a homogenous sample regarding affinity to technology, prior 524 

knowledge, as well as experiences, and trust in automation (Körber et al., 2016). Recent research has 525 

revealed moderating covariates such as age that may influence the attitudes toward automated driving 526 

(Hohenberger, Spörrle, & Welpe, 2016; Körber & Bengler, 2014; Payre et al., 2014). To increase the 527 
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external validity of the results, we, therefore, recommend investigating attitudes toward automated 528 

driving with different demographics in future studies.  529 

 530 

Key Points: 531 

 Providing a post hoc explanation for a take-over request had small to no impact on trust or 532 

acceptance of a driving automation 533 

 Providing a post hoc explanation increased the perceived understanding of the system and of 534 

the reason for a take-over request 535 
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